O0428HMA11
This model is a fine-tuned version of allenai/OLMo-1B on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0353
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.6441 | 0.09 | 10 | 0.2795 |
0.1859 | 0.18 | 20 | 0.1565 |
0.1509 | 0.27 | 30 | 0.1657 |
0.1581 | 0.36 | 40 | 0.1509 |
0.1497 | 0.45 | 50 | 0.1504 |
0.1514 | 0.54 | 60 | 0.1496 |
0.1497 | 0.63 | 70 | 0.1472 |
0.1487 | 0.73 | 80 | 0.1529 |
0.1465 | 0.82 | 90 | 0.1488 |
0.149 | 0.91 | 100 | 0.1478 |
0.1511 | 1.0 | 110 | 0.1483 |
0.1438 | 1.09 | 120 | 0.1352 |
0.1382 | 1.18 | 130 | 0.1203 |
0.59 | 1.27 | 140 | 2.9085 |
0.602 | 1.36 | 150 | 1.5195 |
6.4792 | 1.45 | 160 | 5.2383 |
2.3451 | 1.54 | 170 | 0.7049 |
1.0846 | 1.63 | 180 | 0.6462 |
0.5224 | 1.72 | 190 | 0.3806 |
0.3875 | 1.81 | 200 | 0.2835 |
0.2533 | 1.9 | 210 | 0.2670 |
0.2265 | 1.99 | 220 | 0.2117 |
0.1544 | 2.08 | 230 | 0.1180 |
0.1085 | 2.18 | 240 | 0.0898 |
0.0812 | 2.27 | 250 | 0.0735 |
0.0721 | 2.36 | 260 | 0.0757 |
0.0719 | 2.45 | 270 | 0.0617 |
0.0545 | 2.54 | 280 | 0.0565 |
0.0479 | 2.63 | 290 | 0.0479 |
0.0458 | 2.72 | 300 | 0.0403 |
0.0316 | 2.81 | 310 | 0.0371 |
0.0298 | 2.9 | 320 | 0.0362 |
0.0346 | 2.99 | 330 | 0.0353 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.1
Model tree for Litzy619/O0428HMA11
Base model
allenai/OLMo-1B