O0428HMA3
This model is a fine-tuned version of allenai/OLMo-1B on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0534
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 80
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.516 | 0.09 | 10 | 0.1675 |
0.1635 | 0.18 | 20 | 0.1582 |
0.1494 | 0.27 | 30 | 0.1521 |
0.1524 | 0.36 | 40 | 0.1511 |
0.1511 | 0.45 | 50 | 0.1465 |
0.1533 | 0.54 | 60 | 0.1502 |
0.149 | 0.63 | 70 | 0.1473 |
0.1503 | 0.73 | 80 | 0.1592 |
0.1487 | 0.82 | 90 | 0.1494 |
0.1474 | 0.91 | 100 | 0.1475 |
0.1331 | 1.0 | 110 | 0.2279 |
0.3556 | 1.09 | 120 | 0.1260 |
0.2269 | 1.18 | 130 | 0.1110 |
0.1173 | 1.27 | 140 | 0.0777 |
0.1209 | 1.36 | 150 | 0.0818 |
0.0771 | 1.45 | 160 | 0.0822 |
0.0701 | 1.54 | 170 | 0.0583 |
0.0641 | 1.63 | 180 | 0.0579 |
0.0638 | 1.72 | 190 | 0.0560 |
0.0564 | 1.81 | 200 | 0.0569 |
0.058 | 1.9 | 210 | 0.0603 |
0.059 | 1.99 | 220 | 0.0548 |
0.0576 | 2.08 | 230 | 0.0548 |
0.0532 | 2.18 | 240 | 0.0565 |
0.0549 | 2.27 | 250 | 0.0574 |
0.0586 | 2.36 | 260 | 0.0561 |
0.0537 | 2.45 | 270 | 0.0543 |
0.0522 | 2.54 | 280 | 0.0545 |
0.0541 | 2.63 | 290 | 0.0556 |
0.055 | 2.72 | 300 | 0.0532 |
0.0556 | 2.81 | 310 | 0.0531 |
0.0563 | 2.9 | 320 | 0.0533 |
0.0579 | 2.99 | 330 | 0.0534 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.1
Model tree for Litzy619/O0428HMA3
Base model
allenai/OLMo-1B