O0507TESTV1
This model is a fine-tuned version of allenai/OLMo-1B on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1437
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
4.819 | 0.09 | 10 | 1.4638 |
0.4886 | 0.18 | 20 | 0.2184 |
0.1649 | 0.27 | 30 | 0.1599 |
0.154 | 0.36 | 40 | 0.1524 |
0.1498 | 0.45 | 50 | 0.1531 |
0.1522 | 0.54 | 60 | 0.1502 |
0.152 | 0.63 | 70 | 0.1459 |
0.1531 | 0.73 | 80 | 0.1631 |
0.15 | 0.82 | 90 | 0.1488 |
0.1508 | 0.91 | 100 | 0.1472 |
0.1478 | 1.0 | 110 | 0.1304 |
0.1953 | 1.09 | 120 | 0.1694 |
0.6381 | 1.18 | 130 | 0.8187 |
0.2143 | 1.27 | 140 | 0.1522 |
0.1611 | 1.36 | 150 | 0.1514 |
0.2523 | 1.45 | 160 | 0.6946 |
0.4389 | 1.54 | 170 | 0.1573 |
0.1769 | 1.63 | 180 | 0.4123 |
0.1897 | 1.72 | 190 | 0.1659 |
0.3014 | 1.81 | 200 | 0.1595 |
0.1523 | 1.9 | 210 | 0.1527 |
0.1503 | 1.99 | 220 | 0.1510 |
0.1507 | 2.08 | 230 | 0.1492 |
0.1457 | 2.18 | 240 | 0.1475 |
0.1442 | 2.27 | 250 | 0.1497 |
0.1475 | 2.36 | 260 | 0.1475 |
0.1446 | 2.45 | 270 | 0.1468 |
0.1429 | 2.54 | 280 | 0.1464 |
0.1428 | 2.63 | 290 | 0.1475 |
0.1447 | 2.72 | 300 | 0.1452 |
0.1447 | 2.81 | 310 | 0.1439 |
0.143 | 2.9 | 320 | 0.1437 |
0.1431 | 2.99 | 330 | 0.1437 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.0
Model tree for Litzy619/O0507TESTV1
Base model
allenai/OLMo-1B