O0507TESTV3
This model is a fine-tuned version of allenai/OLMo-1B on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0538
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
4.3156 | 0.09 | 10 | 0.8871 |
0.3104 | 0.18 | 20 | 0.1623 |
0.1529 | 0.27 | 30 | 0.1664 |
0.1539 | 0.36 | 40 | 0.1590 |
0.1514 | 0.45 | 50 | 0.1583 |
0.1531 | 0.54 | 60 | 0.1522 |
0.1498 | 0.63 | 70 | 0.1408 |
0.171 | 0.73 | 80 | 0.1409 |
0.1272 | 0.82 | 90 | 0.1693 |
0.2015 | 0.91 | 100 | 0.1584 |
0.107 | 1.0 | 110 | 0.0654 |
0.4968 | 1.09 | 120 | 0.1420 |
0.342 | 1.18 | 130 | 0.1915 |
0.109 | 1.27 | 140 | 0.0654 |
0.0725 | 1.36 | 150 | 0.0626 |
0.0567 | 1.45 | 160 | 0.0578 |
0.3557 | 1.54 | 170 | 0.4651 |
0.3692 | 1.63 | 180 | 0.0866 |
0.0729 | 1.72 | 190 | 0.0802 |
0.0804 | 1.81 | 200 | 0.0645 |
0.0627 | 1.9 | 210 | 0.0626 |
0.0661 | 1.99 | 220 | 0.0609 |
0.0618 | 2.08 | 230 | 0.0569 |
0.1019 | 2.18 | 240 | 0.0602 |
0.0577 | 2.27 | 250 | 0.0555 |
0.0591 | 2.36 | 260 | 0.0565 |
0.0553 | 2.45 | 270 | 0.0548 |
0.0534 | 2.54 | 280 | 0.0539 |
0.0556 | 2.63 | 290 | 0.0564 |
0.0559 | 2.72 | 300 | 0.0533 |
0.0579 | 2.81 | 310 | 0.0533 |
0.0584 | 2.9 | 320 | 0.0537 |
0.0589 | 2.99 | 330 | 0.0538 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.0
Model tree for Litzy619/O0507TESTV3
Base model
allenai/OLMo-1B