O0508V5
This model is a fine-tuned version of allenai/OLMo-1B on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0560
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 80
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
5.0498 | 0.09 | 10 | 2.7298 |
1.1224 | 0.18 | 20 | 0.2229 |
0.1729 | 0.27 | 30 | 0.1692 |
0.1563 | 0.36 | 40 | 0.1537 |
0.1488 | 0.45 | 50 | 0.1479 |
0.1499 | 0.54 | 60 | 0.1482 |
0.1479 | 0.63 | 70 | 0.1459 |
0.1505 | 0.73 | 80 | 0.1541 |
0.1441 | 0.82 | 90 | 0.2022 |
0.1219 | 0.91 | 100 | 0.7452 |
1.0984 | 1.0 | 110 | 0.1533 |
0.1732 | 1.09 | 120 | 0.1442 |
0.1367 | 1.18 | 130 | 0.0983 |
0.1436 | 1.27 | 140 | 0.0921 |
0.0958 | 1.36 | 150 | 0.1662 |
0.1167 | 1.45 | 160 | 0.0953 |
0.0732 | 1.54 | 170 | 0.0720 |
0.0692 | 1.63 | 180 | 0.0678 |
0.0662 | 1.72 | 190 | 0.0587 |
0.0586 | 1.81 | 200 | 0.0591 |
0.0587 | 1.9 | 210 | 0.0595 |
0.0627 | 1.99 | 220 | 0.0556 |
0.0582 | 2.08 | 230 | 0.0560 |
0.0535 | 2.18 | 240 | 0.0567 |
0.055 | 2.27 | 250 | 0.0577 |
0.0613 | 2.36 | 260 | 0.0559 |
0.0537 | 2.45 | 270 | 0.0569 |
0.0519 | 2.54 | 280 | 0.0616 |
0.0559 | 2.63 | 290 | 0.0582 |
0.0556 | 2.72 | 300 | 0.0559 |
0.0576 | 2.81 | 310 | 0.0557 |
0.0607 | 2.9 | 320 | 0.0559 |
0.0592 | 2.99 | 330 | 0.0560 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.0
Model tree for Litzy619/O0508V5
Base model
allenai/OLMo-1B