Emoloom-2B

Emoloom-2B is a ~2B-parameter emotion understanding model that outputs multi-label emotion categories and continuous VAD (Valence, Arousal, Dominance) for dialogue utterances. It is fine-tuned from Qwen/Qwen1.5-1.8B-Chat with SFT on a curated mix of GoEmotions and Empathetic Dialogues, plus consistency constraints to keep JSON outputs robust and parsing-friendly.

Output format (single line JSON): {"labels": ["sad","anxious"], "vad": {"v": 0.42, "a": 0.31, "d": 0.28}, "rationale": "short evidence"}


✨ Highlights

  • Dual signal: multi-label categories + continuous VAD in [0,1], two decimals.
  • Robust JSON: training disables KV cache during generation for consistent formatting.
  • Long-tail focus: sampling and weak-label cleanup reduce β€œmode collapse” onto majority classes.
  • Paper-ready figures: bundled plotting code exports high-res bar/radar/CI-band PNGs.

πŸ“Š Results (dev & cross-corpus)

Exp Macro-F1 Macro-P Macro-R VAD(1-RMSE) ParseOK n(dev)
sft_qwen_mix2080 0.3500 0.5000 0.2693 0.9417 1.000 3663
sft_qwen_mix5050 0.3470 0.5000 0.2657 0.9337 1.000 3309
sft_qwen_mix8020 0.3341 0.5000 0.2509 0.9135 1.000 2068
sft_qwen_mix2080_dd_quick (DailyDialog, quick) 0.3071 0.5000 0.2136 0.8066 0.976 6261

Notes:

  • ParseOK = fraction of generations that are valid, one-line JSON.
  • VAD score is reported as 1 βˆ’ RMSE (higher is better).

🧠 Model Details

  • Base: Qwen/Qwen1.5-1.8B-Chat
  • Size: ~1.8B params
  • Architecture: causal decoder-only transformer
  • Precision: BF16 training, eval in BF16/FP16/FP32 fallback
  • Tokenizer: Qwen tokenizer (pad set to EOS if missing)

🧾 Training Data & Processing

  • Sources: GoEmotions (multi-label), Empathetic Dialogues (dialogue empathy).
  • Mixing: ratios explored (20:80, 50:50, 80:20); 20:80 gave the best trade-off.
  • QC: remove toxic/unclear; enforce min VAD confidence; short rationale template.
  • Target JSON: {labels, vad:{v,a,d}, rationale} with two-decimal VAD.

βš™οΈ Fine-tuning Setup (SFT)

  • Max length: typically 1024–1536 tokens (adaptive truncation for stability)
  • Batch: micro-batch 1, gradient accumulation up to 128 (OOM-safe)
  • LR: ~1.2e-5 cosine decay, warmup ~3%
  • Stability: gradient checkpointing; use_cache=False at train/eval

βœ… Evaluation

  • Prompts build a short system + user pair (context + utterance).
  • Greedy decode, max_new_tokens ~196 (quick eval uses 48).
  • Metrics:
    • Multi-label Macro-F1 / P / R on gold label space
    • VAD 1βˆ’RMSE on [v,a,d]
    • ParseOK for JSON validity

πŸš€ Usage

from transformers import AutoTokenizer, AutoModelForCausalLM
import json, torch

name = "Lixeeone/Emoloom-2B"
tok = AutoTokenizer.from_pretrained(name, trust_remote_code=True, use_fast=True)
model = AutoModelForCausalLM.from_pretrained(name, torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True)
if tok.pad_token_id is None:
    tok.pad_token = tok.eos_token
model.config.use_cache = False  # keep output format stable

context = "We argued last night but made up this morning."
utterance = "I’m still a bit shaken though."

sys = ("You are an empathetic assistant. Identify emotion labels (multi-label) "
       "and estimate VAD (Valence, Arousal, Dominance in [0,1]). Respond with STRICT one-line JSON only.")
usr = (
    "Task: Read the text and provide emotion labels and VAD with two decimals, plus a brief rationale (<=30 words).\n"
    "Return JSON ONLY, single line:\n"
    '{{"labels": [...], "vad": {{"v": 0.00, "a": 0.00, "d": 0.00}}, "rationale": "..."}}\n'
    f"Context: {context}\n"
    f'Text: "{utterance}"'
)

msgs = [{"role":"system","content":sys},{"role":"user","content":usr}]
prompt = tok.apply_chat_template(msgs, tokenize=False, add_generation_prompt=True)
inp = tok(prompt, return_tensors="pt").to(model.device)

with torch.no_grad():
    out = model.generate(**inp, max_new_tokens=128, do_sample=False, use_cache=False)
gen = tok.decode(out[0][inp["input_ids"].shape[1]:], skip_special_tokens=True)

pred = json.loads(gen)  # {"labels":[...], "vad":{"v":..,"a":..,"d":..}, "rationale": "..."}
print(pred)


Downloads last month

-

Downloads are not tracked for this model. How to track
Safetensors
Model size
1.84B params
Tensor type
BF16
Β·
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Model tree for Lixeeone/Emoloom-2B

Finetuned
(17)
this model

Dataset used to train Lixeeone/Emoloom-2B

Evaluation results

  • macro_f1 on Mixed (GoEmotions + Empathetic Dialogues)
    self-reported
    0.350
  • macro_precision on Mixed (GoEmotions + Empathetic Dialogues)
    self-reported
    0.500
  • macro_recall on Mixed (GoEmotions + Empathetic Dialogues)
    self-reported
    0.269
  • vad_1_minus_rmse on Mixed (GoEmotions + Empathetic Dialogues)
    self-reported
    0.942
  • parse_ok on Mixed (GoEmotions + Empathetic Dialogues)
    self-reported
    1.000
  • macro_f1 on OpenDataLab/DailyDialog
    self-reported
    0.307
  • vad_1_minus_rmse on OpenDataLab/DailyDialog
    self-reported
    0.807
  • parse_ok on OpenDataLab/DailyDialog
    self-reported
    0.976