Lixeeone commited on
Commit
2b4f484
·
verified ·
1 Parent(s): 3c4c163

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +80 -0
README.md ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+
3
+
4
+
5
+ # Emoloom-2B
6
+
7
+ **Emoloom-2B** is a ~2B parameter model fine-tuned for **emotion-centric dialogue understanding**.
8
+ It outputs both **categorical emotion labels** and **continuous Valence–Arousal–Dominance (VAD)** estimates in a structured JSON format.
9
+
10
+ ---
11
+
12
+ ## 📖 Model Details
13
+
14
+ * **Base model**: [Qwen-1.8B-Chat](https://huggingface.co/Qwen/Qwen1.5-1.8B-Chat)
15
+ * **Fine-tuning objective**:
16
+
17
+ * Emotion classification (Macro-F1, P, R)
18
+ * VAD regression (minimize RMSE, maximize Pearson ρ)
19
+ * Structured response quality (ParseOK consistency)
20
+ * **Training mix**: GoEmotions, EmpatheticDialogues, MELD, with weak-label augmentation from NRC-VAD lexicon.
21
+ * **Best configuration**: 20:80 weak:gold ratio.
22
+
23
+ ---
24
+
25
+ ## ⚡ Performance
26
+
27
+ | Exp | Macro-F1 | Macro-P | Macro-R | VAD(1-RMSE) | ParseOK | n(dev) |
28
+ | ------------------------- | -------- | ------- | ------- | ----------- | ------- | ------ |
29
+ | sft_qwen_mix2080 | 0.3500 | 0.5000 | 0.2693 | 0.9417 | 1.000 | 3663 |
30
+ | sft_qwen_mix5050 | 0.3470 | 0.5000 | 0.2657 | 0.9337 | 1.000 | 3309 |
31
+ | sft_qwen_mix8020 | 0.3341 | 0.5000 | 0.2509 | 0.9135 | 1.000 | 2068 |
32
+ | sft_qwen_mix2080_dd_quick | 0.3071 | 0.5000 | 0.2136 | 0.8066 | 0.976 | 6261 |
33
+
34
+ ---
35
+
36
+ ## 🚀 Usage
37
+
38
+ ```python
39
+ from transformers import AutoModelForCausalLM, AutoTokenizer
40
+ import torch, json
41
+
42
+ model = AutoModelForCausalLM.from_pretrained("Lixeeone/Emoloom-2B").to("cuda")
43
+ tokenizer = AutoTokenizer.from_pretrained("Lixeeone/Emoloom-2B")
44
+
45
+ text = "Utterance: I feel so lost today.\nContext: None\nPredict emotion + VAD:"
46
+ inputs = tokenizer(text, return_tensors="pt").to("cuda")
47
+
48
+ with torch.no_grad():
49
+ outputs = model.generate(**inputs, max_new_tokens=48)
50
+ gen_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
51
+
52
+ print(gen_text)
53
+ # Expected: {"labels": ["sad"], "vad": {"v": 0.3, "a": -0.2, "d": -0.4}}
54
+ ```
55
+
56
+ ---
57
+
58
+ ## 🧩 Limitations
59
+
60
+ * Evaluated only on **English** text.
61
+ * DailyDialog cross-corpus generalization shows performance drop (F1 ~0.31).
62
+ * Weak labels from NRC-VAD are noisy; interpret fine-grained scores with caution.
63
+
64
+ ---
65
+
66
+ ## 📜 Citation
67
+
68
+ If you use this model, please cite:
69
+
70
+ ```bibtex
71
+ @misc{emoloom2025,
72
+ title={Emoloom-2B: A 2B-parameter Emotion-Centric Dialogue Model},
73
+ author={Li, Zilin and collaborators},
74
+ year={2025},
75
+ url={https://huggingface.co/Lixeeone/Emoloom-2B}
76
+ }
77
+ ```
78
+
79
+
80
+