A pre-trained language model, based on the Mistral 7B model, has been scaled down to approximately 248 million parameters. This model has been trained on 7,488,000 examples. This model isn't intended for direct use but for fine-tuning on a downstream task. This model should have a context length of around 32,768 tokens. Safe serialization has been removed due to issues saving model weights.

During evaluation on InstructMix, this model achieved an average perplexity score of 6.3. More epochs are planned for this model on different datasets.

Open LLM Leaderboard Evaluation Results (outdated)

Detailed results can be found here

Metric Value
Avg. 24.18
ARC (25-shot) 20.82
HellaSwag (10-shot) 26.98
MMLU (5-shot) 23.11
TruthfulQA (0-shot) 46.89
Winogrande (5-shot) 50.75
GSM8K (5-shot) 0.0
DROP (3-shot) 0.74

The purpose of this model is to prove that trillion-scale datasets are not needed to pretrain a language model. As a result of needing small datasets, this model was pretrained on a single GPU (Titan V).

Downloads last month
1,046
Safetensors
Model size
248M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Locutusque/TinyMistral-248M

Adapters
2 models
Finetunes
3 models
Merges
1 model
Quantizations
6 models

Datasets used to train Locutusque/TinyMistral-248M

Space using Locutusque/TinyMistral-248M 1