Add final trained model
Browse files- README.md +140 -146
- model.safetensors +1 -1
README.md
CHANGED
@@ -8,15 +8,60 @@ tags:
|
|
8 |
- loss:MultipleNegativesRankingLoss
|
9 |
base_model: BAAI/bge-base-en-v1.5
|
10 |
widget:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
- source_sentence: I'm planning a surprise birthday party for my friend next week
|
12 |
and I want to gather some interesting facts and news articles about birthdays.
|
13 |
Can you provide me with random birthday facts and the latest news articles related
|
14 |
to birthdays from different sources? Additionally, please recommend some popular
|
15 |
party venues and catering services in my area.
|
16 |
sentences:
|
17 |
-
- "def numbers_get_trivia_fact:\n\t\"\"\"\n\tDescription:\n\tGet a trivia fact about\
|
18 |
-
\ a number\n\n\tArguments:\n\t---------\n\t- number : STRING (required)\n\t Description:\
|
19 |
-
\ The integer of interest\n\t Default: 42\n\t\"\"\""
|
20 |
- "def reuters_business_and_financial_news_get_article_by_category_id_and_article_date:\n\
|
21 |
\t\"\"\"\n\tDescription:\n\tGet Article by category id and article date\n\tex\
|
22 |
\ :/api/v1/category-id-8/article-date-11-04-2021\n\t\n\tcategory - category id\
|
@@ -24,76 +69,25 @@ widget:
|
|
24 |
\t- category : string (required)\n\t Default: 8\n\t- date : string (required)\n\
|
25 |
\t Default: 11-04-2021\n\t- category-id : STRING (required)\n\t Default: 8\n\
|
26 |
\t- ArticleDate : STRING (required)\n\t Default: 11-04-2021\n\t\"\"\""
|
27 |
-
- "def
|
28 |
-
\
|
29 |
-
\
|
30 |
-
\
|
31 |
-
|
32 |
-
\
|
33 |
-
\ la gestión de errores.\n\t\n\n\tArguments:\n\t---------\n\t\"\"\""
|
34 |
-
- source_sentence: I'm conducting research on the NFT market. Could you fetch the
|
35 |
-
top-selling NFTs today and the volume and trades of the top trending collections
|
36 |
-
this month? This information will be valuable for my analysis.
|
37 |
-
sentences:
|
38 |
-
- "def top_nft_sales_top_nfts_today:\n\t\"\"\"\n\tDescription:\n\tTop selling NFTs\
|
39 |
-
\ today\n\n\tArguments:\n\t---------\n\t\"\"\""
|
40 |
-
- "def quotsy_get_quotes:\n\t\"\"\"\n\tDescription:\n\treturn qoutes\n\n\tArguments:\n\
|
41 |
\t---------\n\t\"\"\""
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
\ Default: cosmic\n\t- webtoon : STRING (required)\n\t Description: Specify\
|
47 |
-
\ the webtoon's slug. See /webtoons for the webtoon list.\n\t Default: eleceed\n\
|
48 |
-
\t- limit : NUMBER (required)\n\t Description: Number of results per page, between\
|
49 |
-
\ 1 - 20.\n\t Default: 10\n\t- page : NUMBER (required)\n\t Description: Specify\
|
50 |
-
\ the page to fetch.\n\t Default: 1\n\t\"\"\""
|
51 |
-
- source_sentence: My friend is visiting me in Los Angeles and I want to show her
|
52 |
-
around. Can you recommend some popular tourist attractions in the city? Additionally,
|
53 |
-
provide me with the latest news about Los Angeles.
|
54 |
-
sentences:
|
55 |
-
- "def 360_business_tool_getcompaniessince:\n\t\"\"\"\n\tDescription:\n\tGet companies\
|
56 |
-
\ modified since\n\n\tArguments:\n\t---------\n\t- timestamp : NUMBER (required)\n\
|
57 |
-
\t\"\"\""
|
58 |
-
- "def coinranking_get_coins_index:\n\t\"\"\"\n\tDescription:\n\tList of all coins\
|
59 |
-
\ currently available on coinranking, for indexing purposes.\n\tThis endpoint\
|
60 |
-
\ requires the **ultra** plan or higher.\n\n\tArguments:\n\t---------\n\t\"\"\""
|
61 |
-
- "def ski_resort_forecast_current_snow_conditions:\n\t\"\"\"\n\tDescription:\n\t\
|
62 |
-
Returns the current snow conditions for a given resort name\n\n\tArguments:\n\t\
|
63 |
-
---------\n\t- resort : string (required)\n\t Default: Jackson Hole\n\t\"\"\""
|
64 |
-
- source_sentence: Hello, I'm an NFT enthusiast and I'm eager to explore the latest
|
65 |
-
NFT news. Can you fetch the most recent news articles for me? Additionally, I'd
|
66 |
-
like to check out the welcome page of the NFT API News tool to learn more about
|
67 |
-
its functionalities.
|
68 |
-
sentences:
|
69 |
-
- "def nft_api_news_nft_news:\n\t\"\"\"\n\tDescription:\n\tThis is where you get\
|
70 |
-
\ all the up to date NFT news. This is a live feed and is updated daily.\n\n\t\
|
71 |
-
Arguments:\n\t---------\n\t\"\"\""
|
72 |
-
- "def google_trends_trendings:\n\t\"\"\"\n\tDescription:\n\tThe endpoint used to\
|
73 |
-
\ display some of the trending search keywords on Google in a specific region\
|
74 |
-
\ and on a specific date.\n\n\tArguments:\n\t---------\n\t- date : DATE (YYYY-MM-DD)\
|
75 |
-
\ (required)\n\t Description: To display trend data for a specific date\n\t-\
|
76 |
-
\ region_code : STRING (required)\n\t Description: The region_code parameter\
|
77 |
-
\ is used to display data only for the specified region.\n\tExample: **GB**, **ID**,\
|
78 |
-
\ **US**, etc.\n\tTo view the list of supported regions, please check the **/regions**\
|
79 |
-
\ endpoint.\n\t Default: US\n\t\"\"\""
|
80 |
-
- "def apimail10_getnewemail10:\n\t\"\"\"\n\tDescription:\n\tget New Email 10\n\n\
|
81 |
-
\tArguments:\n\t---------\n\t\"\"\""
|
82 |
-
- source_sentence: I need to know the team information for the Seattle Storm. Also,
|
83 |
-
please give me the list of all WNBA teams and the schedule data for the game on
|
84 |
-
June 15, 2022.
|
85 |
sentences:
|
86 |
-
- "def
|
87 |
-
\
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
\ you with the WNBA schedule data for a specified date as long as it is available.\n\
|
94 |
-
\n\tArguments:\n\t---------\n\t- month : STRING (required)\n\t Default: 05\n\t\
|
95 |
-
- day : STRING (required)\n\t Default: 05\n\t- year : STRING (required)\n\t \
|
96 |
-
\ Default: 2022\n\t\"\"\""
|
97 |
pipeline_tag: sentence-similarity
|
98 |
library_name: sentence-transformers
|
99 |
metrics:
|
@@ -126,58 +120,58 @@ model-index:
|
|
126 |
type: dev
|
127 |
metrics:
|
128 |
- type: cosine_accuracy@1
|
129 |
-
value: 0.
|
130 |
name: Cosine Accuracy@1
|
131 |
- type: cosine_accuracy@3
|
132 |
value: 0.8494845360824742
|
133 |
name: Cosine Accuracy@3
|
134 |
- type: cosine_accuracy@5
|
135 |
-
value: 0.
|
136 |
name: Cosine Accuracy@5
|
137 |
- type: cosine_accuracy@10
|
138 |
-
value: 0.
|
139 |
name: Cosine Accuracy@10
|
140 |
- type: cosine_precision@1
|
141 |
-
value: 0.
|
142 |
name: Cosine Precision@1
|
143 |
- type: cosine_precision@3
|
144 |
-
value: 0.
|
145 |
name: Cosine Precision@3
|
146 |
- type: cosine_precision@5
|
147 |
-
value: 0.
|
148 |
name: Cosine Precision@5
|
149 |
- type: cosine_precision@10
|
150 |
-
value: 0.
|
151 |
name: Cosine Precision@10
|
152 |
- type: cosine_recall@1
|
153 |
-
value: 0.
|
154 |
name: Cosine Recall@1
|
155 |
- type: cosine_recall@3
|
156 |
-
value: 0.
|
157 |
name: Cosine Recall@3
|
158 |
- type: cosine_recall@5
|
159 |
-
value: 0.
|
160 |
name: Cosine Recall@5
|
161 |
- type: cosine_recall@10
|
162 |
-
value: 0.
|
163 |
name: Cosine Recall@10
|
164 |
- type: cosine_ndcg@1
|
165 |
-
value: 0.
|
166 |
name: Cosine Ndcg@1
|
167 |
- type: cosine_ndcg@3
|
168 |
-
value: 0.
|
169 |
name: Cosine Ndcg@3
|
170 |
- type: cosine_ndcg@5
|
171 |
-
value: 0.
|
172 |
name: Cosine Ndcg@5
|
173 |
- type: cosine_ndcg@10
|
174 |
-
value: 0.
|
175 |
name: Cosine Ndcg@10
|
176 |
- type: cosine_mrr@10
|
177 |
-
value: 0.
|
178 |
name: Cosine Mrr@10
|
179 |
- type: cosine_map@100
|
180 |
-
value: 0.
|
181 |
name: Cosine Map@100
|
182 |
---
|
183 |
|
@@ -231,9 +225,9 @@ from sentence_transformers import SentenceTransformer
|
|
231 |
model = SentenceTransformer("LorMolf/mnrl-toolbench-bge-base-en-v1.5")
|
232 |
# Run inference
|
233 |
sentences = [
|
234 |
-
'I
|
235 |
-
'def
|
236 |
-
'def
|
237 |
]
|
238 |
embeddings = model.encode(sentences)
|
239 |
print(embeddings.shape)
|
@@ -278,26 +272,26 @@ You can finetune this model on your own dataset.
|
|
278 |
* Dataset: `dev`
|
279 |
* Evaluated with <code>src.port.retrieval_evaluator.DeviceAwareInformationRetrievalEvaluator</code>
|
280 |
|
281 |
-
| Metric | Value
|
282 |
-
|
283 |
-
| cosine_accuracy@1 | 0.
|
284 |
-
| cosine_accuracy@3 | 0.8495
|
285 |
-
| cosine_accuracy@5 | 0.
|
286 |
-
| cosine_accuracy@10 | 0.
|
287 |
-
| cosine_precision@1 | 0.
|
288 |
-
| cosine_precision@3 | 0.
|
289 |
-
| cosine_precision@5 | 0.
|
290 |
-
| cosine_precision@10 | 0.
|
291 |
-
| cosine_recall@1 | 0.
|
292 |
-
| cosine_recall@3 | 0.
|
293 |
-
| cosine_recall@5 | 0.
|
294 |
-
| cosine_recall@10 | 0.
|
295 |
-
| cosine_ndcg@1 | 0.
|
296 |
-
| cosine_ndcg@3 | 0.
|
297 |
-
| cosine_ndcg@5 | 0.
|
298 |
-
| **cosine_ndcg@10** | **0.
|
299 |
-
| cosine_mrr@10 | 0.
|
300 |
-
| cosine_map@100 | 0.
|
301 |
|
302 |
<!--
|
303 |
## Bias, Risks and Limitations
|
@@ -323,13 +317,13 @@ You can finetune this model on your own dataset.
|
|
323 |
| | sentence_0 | sentence_1 | sentence_2 |
|
324 |
|:--------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
|
325 |
| type | string | string | string |
|
326 |
-
| details | <ul><li>min: 22 tokens</li><li>mean: 59.32 tokens</li><li>max: 163 tokens</li></ul> | <ul><li>min: 27 tokens</li><li>mean: 73.59 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min:
|
327 |
* Samples:
|
328 |
-
| sentence_0 | sentence_1 | sentence_2
|
329 |
-
|
330 |
-
| <code>I am planning a trip to Paris from July 10th to July 15th. Can you provide me with the working hours for this period, considering the Federal holidays in France? Also, recommend some events happening in Paris during this time and send me the calendar invites for these events.</code> | <code>def working_days__1_3_add_working_hours:<br> """<br> Description:<br> Add an amount of working time to a given start date/time<br><br> Arguments:<br> ---------<br> - start_date : STRING (required)<br> Description: The start date (YYYY-MM-DD)<br> Default: 2013-12-31<br> - country_code : STRING (required)<br> Description: The ISO country code (2 letters). See <a href=https://api.workingdays.org/api-countries >available countries & configurations</a><br> Default: US<br> - start_time : STRING (required)<br> Description: The start time in a 24 hours format with leading zeros.<br> Default: 08:15<br> """</code> | <code>def
|
331 |
-
| <code>I'm organizing a company event and I need to find a venue that can accommodate 100 people. Can you suggest some event spaces in the city with good reviews? Also, I would like to gather information about nearby transportation options and recommend some local catering services.</code> | <code>def socie_get_members:<br> """<br> Description:<br> Retrieve all or some members of your community.<br><br> Arguments:<br> ---------<br> """</code> | <code>def
|
332 |
-
| <code>I want to surprise my friends with a Netflix binge session and I'm looking for some highly ranked series. Can you provide me with a list of the top 100 ranked Netflix original series? Also, check if the word 'chimpo' is vulgar using the SHIMONETA API.</code> | <code>def shimoneta_send_a_word_to_check:<br> """<br> Description:<br> The API returns what the word means if the word is vulgar.<br><br> Arguments:<br> ---------<br> - word : STRING (required)<br> Default: chimpo<br> """</code> | <code>def
|
333 |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
334 |
```json
|
335 |
{
|
@@ -472,36 +466,36 @@ You can finetune this model on your own dataset.
|
|
472 |
| Epoch | Step | dev_cosine_ndcg@10 |
|
473 |
|:------:|:----:|:------------------:|
|
474 |
| -1 | -1 | 0.6750 |
|
475 |
-
| 0.1875 | 6 | 0.
|
476 |
-
| 0.375 | 12 | 0.
|
477 |
-
| 0.5625 | 18 | 0.
|
478 |
-
| 0.75 | 24 | 0.
|
479 |
-
| 0.9375 | 30 | 0.
|
480 |
-
| 1.0 | 32 | 0.
|
481 |
-
| 1.125 | 36 | 0.
|
482 |
-
| 1.3125 | 42 | 0.
|
483 |
| 1.5 | 48 | 0.7745 |
|
484 |
-
| 1.6875 | 54 | 0.
|
485 |
-
| 1.875 | 60 | 0.
|
486 |
-
| 2.0 | 64 | 0.
|
487 |
-
| 2.0625 | 66 | 0.
|
488 |
-
| 2.25 | 72 | 0.
|
489 |
-
| 2.4375 | 78 | 0.
|
490 |
-
| 2.625 | 84 | 0.
|
491 |
-
| 2.8125 | 90 | 0.
|
492 |
-
| 3.0 | 96 | 0.
|
493 |
-
| 3.1875 | 102 | 0.
|
494 |
-
| 3.375 | 108 | 0.
|
495 |
-
| 3.5625 | 114 | 0.
|
496 |
-
| 3.75 | 120 | 0.
|
497 |
-
| 3.9375 | 126 | 0.
|
498 |
-
| 4.0 | 128 | 0.
|
499 |
-
| 4.125 | 132 | 0.
|
500 |
-
| 4.3125 | 138 | 0.
|
501 |
-
| 4.5 | 144 | 0.
|
502 |
-
| 4.6875 | 150 | 0.
|
503 |
-
| 4.875 | 156 | 0.
|
504 |
-
| 5.0 | 160 | 0.
|
505 |
|
506 |
|
507 |
### Framework Versions
|
|
|
8 |
- loss:MultipleNegativesRankingLoss
|
9 |
base_model: BAAI/bge-base-en-v1.5
|
10 |
widget:
|
11 |
+
- source_sentence: I'm organizing a surprise party for my sister and I need synonyms
|
12 |
+
for the word 'celebrate'. Could you also provide the lexical field for the word
|
13 |
+
'birthday' and the Scrabble score for the word 'festivity'? Moreover, search for
|
14 |
+
translations of the phrase 'Happy anniversary' from English to French using the
|
15 |
+
MyMemory Translation Memory API.
|
16 |
+
sentences:
|
17 |
+
- "def endlessmedicalapi_getoutcomes:\n\t\"\"\"\n\tDescription:\n\tGetOutcomes\n\
|
18 |
+
\n\tArguments:\n\t---------\n\t\"\"\""
|
19 |
+
- "def dicolink_get_lexical_field:\n\t\"\"\"\n\tDescription:\n\tGet Lexical Field\
|
20 |
+
\ for a word\n\n\tArguments:\n\t---------\n\t- mot : string (required)\n\t Default:\
|
21 |
+
\ cheval\n\t\"\"\""
|
22 |
+
- "def Indie_Songs_:_DistroKid_&_Unsigned.Get_Top_50_indie_songs:\n\t\"\"\"\n\t\
|
23 |
+
Description:\n\tGet TOP 50 indie songs based on their daily stream increase ratio\n\
|
24 |
+
\n\tArguments:\n\t---------\n\t\"\"\""
|
25 |
+
- source_sentence: I'm planning a family game night and I need some new games to play.
|
26 |
+
Can you provide me with the details of a random card from Hearthstone and recommend
|
27 |
+
some PlayStation games with good deals?
|
28 |
+
sentences:
|
29 |
+
- "def playstation_store_deals_api_playstationdeals:\n\t\"\"\"\n\tDescription:\n\
|
30 |
+
\tThere is only 1 parameter for this API endpoint.\n\t\n\t1. playstation_deals/?count=0\n\
|
31 |
+
\t\n\tcount = 0 (Min is 0, starting of the list. Max value depends on the total\
|
32 |
+
\ number of games available.)\n\tNote: Since its a List of Items, If the maximum\
|
33 |
+
\ number of games available on deals is 771 then you have to enter (771-1) = 770\
|
34 |
+
\ to get the last game on the deal.\n\t\n\tThis will provide you with the game\
|
35 |
+
\ data as given below which contains name, price, platform, discount percent,\
|
36 |
+
\ discounted price, total no. of games, etc..:\n\t\n\t{\n\t \"name\": \"God of\
|
37 |
+
\ War III Remastered\",\n\t \"titleId\": \"CUSA01623_00\",\n\t \"platform\"\
|
38 |
+
: [\n\t \"PS4\"\n\t ],\n\t \"basePrice\": \"$19.99\",\n\t \"discountPercent\"\
|
39 |
+
: \"-50%\",\n\t \"discountPrice\": \"$9.99\",\n\t \"url\": \"https://store.playstation.com/en-us/product/UP9000-CUSA01623_00-0000GODOFWAR3PS4\"\
|
40 |
+
,\n\t \"Total No. of Games\": 771\n\t}\n\n\tArguments:\n\t---------\n\t- count\
|
41 |
+
\ : NUMBER (required)\n\t Default: 0\n\t\"\"\""
|
42 |
+
- "def captcha_verify_the_captcha:\n\t\"\"\"\n\tDescription:\n\tVerify the captcha\n\
|
43 |
+
\n\tArguments:\n\t---------\n\t- captcha : STRING (required)\n\t Default: Captcha\
|
44 |
+
\ Text\n\t- uuid : STRING (required)\n\t Default: UUID\n\t\"\"\""
|
45 |
+
- "def teste_getinventory:\n\t\"\"\"\n\tDescription:\n\tReturns a map of status\
|
46 |
+
\ codes to quantities\n\n\tArguments:\n\t---------\n\t\"\"\""
|
47 |
+
- source_sentence: I'm conducting research on the NFT market. Could you fetch the
|
48 |
+
top-selling NFTs today and the volume and trades of the top trending collections
|
49 |
+
this month? This information will be valuable for my analysis.
|
50 |
+
sentences:
|
51 |
+
- "def icai_chartered_accountant_verification_get_call:\n\t\"\"\"\n\tDescription:\n\
|
52 |
+
\tUsed to fetch api result using the request id received in responses.\n\n\tArguments:\n\
|
53 |
+
\t---------\n\t- request_id : STRING (required)\n\t Default: 68bbb910-da9b-4d8a-9a1d-4bd878b19846\n\
|
54 |
+
\t\"\"\""
|
55 |
+
- "def top_nft_sales_top_nfts_today:\n\t\"\"\"\n\tDescription:\n\tTop selling NFTs\
|
56 |
+
\ today\n\n\tArguments:\n\t---------\n\t\"\"\""
|
57 |
+
- "def lorem_ipsum_api_sentence:\n\t\"\"\"\n\tDescription:\n\tCreate lorem ipsum\
|
58 |
+
\ by defining the number of sentences\n\n\tArguments:\n\t---------\n\t\"\"\""
|
59 |
- source_sentence: I'm planning a surprise birthday party for my friend next week
|
60 |
and I want to gather some interesting facts and news articles about birthdays.
|
61 |
Can you provide me with random birthday facts and the latest news articles related
|
62 |
to birthdays from different sources? Additionally, please recommend some popular
|
63 |
party venues and catering services in my area.
|
64 |
sentences:
|
|
|
|
|
|
|
65 |
- "def reuters_business_and_financial_news_get_article_by_category_id_and_article_date:\n\
|
66 |
\t\"\"\"\n\tDescription:\n\tGet Article by category id and article date\n\tex\
|
67 |
\ :/api/v1/category-id-8/article-date-11-04-2021\n\t\n\tcategory - category id\
|
|
|
69 |
\t- category : string (required)\n\t Default: 8\n\t- date : string (required)\n\
|
70 |
\t Default: 11-04-2021\n\t- category-id : STRING (required)\n\t Default: 8\n\
|
71 |
\t- ArticleDate : STRING (required)\n\t Default: 11-04-2021\n\t\"\"\""
|
72 |
+
- "def NPS-Net_Promoter_Score.Read_a_survey_NLP:\n\t\"\"\"\n\tDescription:\n\tGet\
|
73 |
+
\ a detail of customer survey answer by its survey id (sid), and applies to the\
|
74 |
+
\ third answer (a3) the sentiment analysis feature.\n\n\tArguments:\n\t---------\n\
|
75 |
+
\t- sid : string (required)\n\t\"\"\""
|
76 |
+
- "def bbc_good_food_api_categories_collections_ids:\n\t\"\"\"\n\tDescription:\n\
|
77 |
+
\tGet all categories collection with there names and namd id\n\n\tArguments:\n\
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
\t---------\n\t\"\"\""
|
79 |
+
- source_sentence: I'm a big fan of Peruvian football and I'm curious about the competitions
|
80 |
+
and teams of televised football matches in the country. Can you provide me with
|
81 |
+
this information? Additionally, fetch me the premium tips and historical results
|
82 |
+
from the Betigolo Tips API to enhance my football knowledge and betting strategy.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
sentences:
|
84 |
+
- "def car_data_types:\n\t\"\"\"\n\tDescription:\n\tget a list of supported types\n\
|
85 |
+
\n\tArguments:\n\t---------\n\t\"\"\""
|
86 |
+
- "def climate_change_live_v27_get_all_climate_change_news:\n\t\"\"\"\n\tDescription:\n\
|
87 |
+
\tThis endpoint will return back all news about Climate Change from all over the\
|
88 |
+
\ world.\n\n\tArguments:\n\t---------\n\t\"\"\""
|
89 |
+
- "def betigolo_tips_premium_tips:\n\t\"\"\"\n\tDescription:\n\tList of active Premium\
|
90 |
+
\ Tips\n\n\tArguments:\n\t---------\n\t\"\"\""
|
|
|
|
|
|
|
|
|
91 |
pipeline_tag: sentence-similarity
|
92 |
library_name: sentence-transformers
|
93 |
metrics:
|
|
|
120 |
type: dev
|
121 |
metrics:
|
122 |
- type: cosine_accuracy@1
|
123 |
+
value: 0.7154639175257732
|
124 |
name: Cosine Accuracy@1
|
125 |
- type: cosine_accuracy@3
|
126 |
value: 0.8494845360824742
|
127 |
name: Cosine Accuracy@3
|
128 |
- type: cosine_accuracy@5
|
129 |
+
value: 0.8969072164948454
|
130 |
name: Cosine Accuracy@5
|
131 |
- type: cosine_accuracy@10
|
132 |
+
value: 0.9381443298969072
|
133 |
name: Cosine Accuracy@10
|
134 |
- type: cosine_precision@1
|
135 |
+
value: 0.7154639175257732
|
136 |
name: Cosine Precision@1
|
137 |
- type: cosine_precision@3
|
138 |
+
value: 0.45979381443298967
|
139 |
name: Cosine Precision@3
|
140 |
- type: cosine_precision@5
|
141 |
+
value: 0.31298969072164956
|
142 |
name: Cosine Precision@5
|
143 |
- type: cosine_precision@10
|
144 |
+
value: 0.17608247422680418
|
145 |
name: Cosine Precision@10
|
146 |
- type: cosine_recall@1
|
147 |
+
value: 0.407594501718213
|
148 |
name: Cosine Recall@1
|
149 |
- type: cosine_recall@3
|
150 |
+
value: 0.7134020618556701
|
151 |
name: Cosine Recall@3
|
152 |
- type: cosine_recall@5
|
153 |
+
value: 0.795704467353952
|
154 |
name: Cosine Recall@5
|
155 |
- type: cosine_recall@10
|
156 |
+
value: 0.8765292096219931
|
157 |
name: Cosine Recall@10
|
158 |
- type: cosine_ndcg@1
|
159 |
+
value: 0.7154639175257732
|
160 |
name: Cosine Ndcg@1
|
161 |
- type: cosine_ndcg@3
|
162 |
+
value: 0.7055299224270164
|
163 |
name: Cosine Ndcg@3
|
164 |
- type: cosine_ndcg@5
|
165 |
+
value: 0.7418598245527984
|
166 |
name: Cosine Ndcg@5
|
167 |
- type: cosine_ndcg@10
|
168 |
+
value: 0.7759821535840169
|
169 |
name: Cosine Ndcg@10
|
170 |
- type: cosine_mrr@10
|
171 |
+
value: 0.7923711340206183
|
172 |
name: Cosine Mrr@10
|
173 |
- type: cosine_map@100
|
174 |
+
value: 0.7207130597174141
|
175 |
name: Cosine Map@100
|
176 |
---
|
177 |
|
|
|
225 |
model = SentenceTransformer("LorMolf/mnrl-toolbench-bge-base-en-v1.5")
|
226 |
# Run inference
|
227 |
sentences = [
|
228 |
+
"I'm a big fan of Peruvian football and I'm curious about the competitions and teams of televised football matches in the country. Can you provide me with this information? Additionally, fetch me the premium tips and historical results from the Betigolo Tips API to enhance my football knowledge and betting strategy.",
|
229 |
+
'def betigolo_tips_premium_tips:\n\t"""\n\tDescription:\n\tList of active Premium Tips\n\n\tArguments:\n\t---------\n\t"""',
|
230 |
+
'def climate_change_live_v27_get_all_climate_change_news:\n\t"""\n\tDescription:\n\tThis endpoint will return back all news about Climate Change from all over the world.\n\n\tArguments:\n\t---------\n\t"""',
|
231 |
]
|
232 |
embeddings = model.encode(sentences)
|
233 |
print(embeddings.shape)
|
|
|
272 |
* Dataset: `dev`
|
273 |
* Evaluated with <code>src.port.retrieval_evaluator.DeviceAwareInformationRetrievalEvaluator</code>
|
274 |
|
275 |
+
| Metric | Value |
|
276 |
+
|:--------------------|:----------|
|
277 |
+
| cosine_accuracy@1 | 0.7155 |
|
278 |
+
| cosine_accuracy@3 | 0.8495 |
|
279 |
+
| cosine_accuracy@5 | 0.8969 |
|
280 |
+
| cosine_accuracy@10 | 0.9381 |
|
281 |
+
| cosine_precision@1 | 0.7155 |
|
282 |
+
| cosine_precision@3 | 0.4598 |
|
283 |
+
| cosine_precision@5 | 0.313 |
|
284 |
+
| cosine_precision@10 | 0.1761 |
|
285 |
+
| cosine_recall@1 | 0.4076 |
|
286 |
+
| cosine_recall@3 | 0.7134 |
|
287 |
+
| cosine_recall@5 | 0.7957 |
|
288 |
+
| cosine_recall@10 | 0.8765 |
|
289 |
+
| cosine_ndcg@1 | 0.7155 |
|
290 |
+
| cosine_ndcg@3 | 0.7055 |
|
291 |
+
| cosine_ndcg@5 | 0.7419 |
|
292 |
+
| **cosine_ndcg@10** | **0.776** |
|
293 |
+
| cosine_mrr@10 | 0.7924 |
|
294 |
+
| cosine_map@100 | 0.7207 |
|
295 |
|
296 |
<!--
|
297 |
## Bias, Risks and Limitations
|
|
|
317 |
| | sentence_0 | sentence_1 | sentence_2 |
|
318 |
|:--------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
|
319 |
| type | string | string | string |
|
320 |
+
| details | <ul><li>min: 22 tokens</li><li>mean: 59.32 tokens</li><li>max: 163 tokens</li></ul> | <ul><li>min: 27 tokens</li><li>mean: 73.59 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 28 tokens</li><li>mean: 71.86 tokens</li><li>max: 512 tokens</li></ul> |
|
321 |
* Samples:
|
322 |
+
| sentence_0 | sentence_1 | sentence_2 |
|
323 |
+
|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
324 |
+
| <code>I am planning a trip to Paris from July 10th to July 15th. Can you provide me with the working hours for this period, considering the Federal holidays in France? Also, recommend some events happening in Paris during this time and send me the calendar invites for these events.</code> | <code>def working_days__1_3_add_working_hours:<br> """<br> Description:<br> Add an amount of working time to a given start date/time<br><br> Arguments:<br> ---------<br> - start_date : STRING (required)<br> Description: The start date (YYYY-MM-DD)<br> Default: 2013-12-31<br> - country_code : STRING (required)<br> Description: The ISO country code (2 letters). See <a href=https://api.workingdays.org/api-countries >available countries & configurations</a><br> Default: US<br> - start_time : STRING (required)<br> Description: The start time in a 24 hours format with leading zeros.<br> Default: 08:15<br> """</code> | <code>def betigolo_predictions_sample_predictions:<br> """<br> Description:<br> Get a list of a sample of matches of the previous day, including predictions for many markets.<br><br> Arguments:<br> ---------<br> """</code> |
|
325 |
+
| <code>I'm organizing a company event and I need to find a venue that can accommodate 100 people. Can you suggest some event spaces in the city with good reviews? Also, I would like to gather information about nearby transportation options and recommend some local catering services.</code> | <code>def socie_get_members:<br> """<br> Description:<br> Retrieve all or some members of your community.<br><br> Arguments:<br> ---------<br> """</code> | <code>def pinterest_apis_search_user:<br> """<br> Description:<br> Search user by keyword<br><br> Arguments:<br> ---------<br> - keyword : STRING (required)<br> Default: Trang Bui<br> """</code> |
|
326 |
+
| <code>I want to surprise my friends with a Netflix binge session and I'm looking for some highly ranked series. Can you provide me with a list of the top 100 ranked Netflix original series? Also, check if the word 'chimpo' is vulgar using the SHIMONETA API.</code> | <code>def shimoneta_send_a_word_to_check:<br> """<br> Description:<br> The API returns what the word means if the word is vulgar.<br><br> Arguments:<br> ---------<br> - word : STRING (required)<br> Default: chimpo<br> """</code> | <code>def NPS-Net_Promoter_Score.Read_a_survey_NLP:<br> """<br> Description:<br> Get a detail of customer survey answer by its survey id (sid), and applies to the third answer (a3) the sentiment analysis feature.<br><br> Arguments:<br> ---------<br> - sid : string (required)<br> """</code> |
|
327 |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
328 |
```json
|
329 |
{
|
|
|
466 |
| Epoch | Step | dev_cosine_ndcg@10 |
|
467 |
|:------:|:----:|:------------------:|
|
468 |
| -1 | -1 | 0.6750 |
|
469 |
+
| 0.1875 | 6 | 0.6878 |
|
470 |
+
| 0.375 | 12 | 0.7236 |
|
471 |
+
| 0.5625 | 18 | 0.7443 |
|
472 |
+
| 0.75 | 24 | 0.7579 |
|
473 |
+
| 0.9375 | 30 | 0.7684 |
|
474 |
+
| 1.0 | 32 | 0.7687 |
|
475 |
+
| 1.125 | 36 | 0.7710 |
|
476 |
+
| 1.3125 | 42 | 0.7752 |
|
477 |
| 1.5 | 48 | 0.7745 |
|
478 |
+
| 1.6875 | 54 | 0.7795 |
|
479 |
+
| 1.875 | 60 | 0.7769 |
|
480 |
+
| 2.0 | 64 | 0.7782 |
|
481 |
+
| 2.0625 | 66 | 0.7793 |
|
482 |
+
| 2.25 | 72 | 0.7808 |
|
483 |
+
| 2.4375 | 78 | 0.7791 |
|
484 |
+
| 2.625 | 84 | 0.7794 |
|
485 |
+
| 2.8125 | 90 | 0.7778 |
|
486 |
+
| 3.0 | 96 | 0.7773 |
|
487 |
+
| 3.1875 | 102 | 0.7765 |
|
488 |
+
| 3.375 | 108 | 0.7767 |
|
489 |
+
| 3.5625 | 114 | 0.7760 |
|
490 |
+
| 3.75 | 120 | 0.7756 |
|
491 |
+
| 3.9375 | 126 | 0.7768 |
|
492 |
+
| 4.0 | 128 | 0.7766 |
|
493 |
+
| 4.125 | 132 | 0.7766 |
|
494 |
+
| 4.3125 | 138 | 0.7759 |
|
495 |
+
| 4.5 | 144 | 0.7760 |
|
496 |
+
| 4.6875 | 150 | 0.7760 |
|
497 |
+
| 4.875 | 156 | 0.7760 |
|
498 |
+
| 5.0 | 160 | 0.7760 |
|
499 |
|
500 |
|
501 |
### Framework Versions
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 437951328
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c771f72cf77fff1301d3f3937a9b2ef31ce32c37c2bc5dca13b3409f50aa4dbd
|
3 |
size 437951328
|