SentenceTransformer based on BAAI/bge-base-en-v1.5
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("LorMolf/mnrl-toolbench-bge-base-en-v1.5")
# Run inference
sentences = [
"I'm a big fan of Peruvian football and I'm curious about the competitions and teams of televised football matches in the country. Can you provide me with this information? Additionally, fetch me the premium tips and historical results from the Betigolo Tips API to enhance my football knowledge and betting strategy.",
'def betigolo_tips_premium_tips:\n\t"""\n\tDescription:\n\tList of active Premium Tips\n\n\tArguments:\n\t---------\n\t"""',
'def climate_change_live_v27_get_all_climate_change_news:\n\t"""\n\tDescription:\n\tThis endpoint will return back all news about Climate Change from all over the world.\n\n\tArguments:\n\t---------\n\t"""',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Device Aware Information Retrieval
- Dataset:
dev
- Evaluated with
src.port.retrieval_evaluator.DeviceAwareInformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.7155 |
cosine_accuracy@3 | 0.8495 |
cosine_accuracy@5 | 0.8969 |
cosine_accuracy@10 | 0.9381 |
cosine_precision@1 | 0.7155 |
cosine_precision@3 | 0.4598 |
cosine_precision@5 | 0.313 |
cosine_precision@10 | 0.1761 |
cosine_recall@1 | 0.4076 |
cosine_recall@3 | 0.7134 |
cosine_recall@5 | 0.7957 |
cosine_recall@10 | 0.8765 |
cosine_ndcg@1 | 0.7155 |
cosine_ndcg@3 | 0.7055 |
cosine_ndcg@5 | 0.7419 |
cosine_ndcg@10 | 0.776 |
cosine_mrr@10 | 0.7924 |
cosine_map@100 | 0.7207 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 1,000 training samples
- Columns:
sentence_0
,sentence_1
, andsentence_2
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 sentence_2 type string string string details - min: 22 tokens
- mean: 59.32 tokens
- max: 163 tokens
- min: 27 tokens
- mean: 73.59 tokens
- max: 512 tokens
- min: 28 tokens
- mean: 71.86 tokens
- max: 512 tokens
- Samples:
sentence_0 sentence_1 sentence_2 I am planning a trip to Paris from July 10th to July 15th. Can you provide me with the working hours for this period, considering the Federal holidays in France? Also, recommend some events happening in Paris during this time and send me the calendar invites for these events.
def working_days__1_3_add_working_hours:
"""
Description:
Add an amount of working time to a given start date/time
Arguments:
---------
- start_date : STRING (required)
Description: The start date (YYYY-MM-DD)
Default: 2013-12-31
- country_code : STRING (required)
Description: The ISO country code (2 letters). See available countries & configurations
Default: US
- start_time : STRING (required)
Description: The start time in a 24 hours format with leading zeros.
Default: 08:15
"""def betigolo_predictions_sample_predictions:
"""
Description:
Get a list of a sample of matches of the previous day, including predictions for many markets.
Arguments:
---------
"""I'm organizing a company event and I need to find a venue that can accommodate 100 people. Can you suggest some event spaces in the city with good reviews? Also, I would like to gather information about nearby transportation options and recommend some local catering services.
def socie_get_members:
"""
Description:
Retrieve all or some members of your community.
Arguments:
---------
"""def pinterest_apis_search_user:
"""
Description:
Search user by keyword
Arguments:
---------
- keyword : STRING (required)
Default: Trang Bui
"""I want to surprise my friends with a Netflix binge session and I'm looking for some highly ranked series. Can you provide me with a list of the top 100 ranked Netflix original series? Also, check if the word 'chimpo' is vulgar using the SHIMONETA API.
def shimoneta_send_a_word_to_check:
"""
Description:
The API returns what the word means if the word is vulgar.
Arguments:
---------
- word : STRING (required)
Default: chimpo
"""def NPS-Net_Promoter_Score.Read_a_survey_NLP:
"""
Description:
Get a detail of customer survey answer by its survey id (sid), and applies to the third answer (a3) the sentiment analysis feature.
Arguments:
---------
- sid : string (required)
""" - Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 32per_device_eval_batch_size
: 32num_train_epochs
: 5fp16
: Truemulti_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | dev_cosine_ndcg@10 |
---|---|---|
-1 | -1 | 0.6750 |
0.1875 | 6 | 0.6878 |
0.375 | 12 | 0.7236 |
0.5625 | 18 | 0.7443 |
0.75 | 24 | 0.7579 |
0.9375 | 30 | 0.7684 |
1.0 | 32 | 0.7687 |
1.125 | 36 | 0.7710 |
1.3125 | 42 | 0.7752 |
1.5 | 48 | 0.7745 |
1.6875 | 54 | 0.7795 |
1.875 | 60 | 0.7769 |
2.0 | 64 | 0.7782 |
2.0625 | 66 | 0.7793 |
2.25 | 72 | 0.7808 |
2.4375 | 78 | 0.7791 |
2.625 | 84 | 0.7794 |
2.8125 | 90 | 0.7778 |
3.0 | 96 | 0.7773 |
3.1875 | 102 | 0.7765 |
3.375 | 108 | 0.7767 |
3.5625 | 114 | 0.7760 |
3.75 | 120 | 0.7756 |
3.9375 | 126 | 0.7768 |
4.0 | 128 | 0.7766 |
4.125 | 132 | 0.7766 |
4.3125 | 138 | 0.7759 |
4.5 | 144 | 0.7760 |
4.6875 | 150 | 0.7760 |
4.875 | 156 | 0.7760 |
5.0 | 160 | 0.7760 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 4.0.2
- Transformers: 4.51.2
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 3.5.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 0
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for LorMolf/mnrl-toolbench-bge-base-en-v1.5
Base model
BAAI/bge-base-en-v1.5Evaluation results
- Cosine Accuracy@1 on devself-reported0.715
- Cosine Accuracy@3 on devself-reported0.849
- Cosine Accuracy@5 on devself-reported0.897
- Cosine Accuracy@10 on devself-reported0.938
- Cosine Precision@1 on devself-reported0.715
- Cosine Precision@3 on devself-reported0.460
- Cosine Precision@5 on devself-reported0.313
- Cosine Precision@10 on devself-reported0.176
- Cosine Recall@1 on devself-reported0.408
- Cosine Recall@3 on devself-reported0.713