metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1000
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
widget:
- source_sentence: >-
I'm organizing a surprise party for my sister and I need synonyms for the
word 'celebrate'. Could you also provide the lexical field for the word
'birthday' and the Scrabble score for the word 'festivity'? Moreover,
search for translations of the phrase 'Happy anniversary' from English to
French using the MyMemory Translation Memory API.
sentences:
- "def endlessmedicalapi_getoutcomes:\n\t\"\"\"\n\tDescription:\n\tGetOutcomes\n\n\tArguments:\n\t---------\n\t\"\"\""
- "def dicolink_get_lexical_field:\n\t\"\"\"\n\tDescription:\n\tGet Lexical Field for a word\n\n\tArguments:\n\t---------\n\t- mot : string (required)\n\t Default: cheval\n\t\"\"\""
- "def Indie_Songs_:_DistroKid_&_Unsigned.Get_Top_50_indie_songs:\n\t\"\"\"\n\tDescription:\n\tGet TOP 50 indie songs based on their daily stream increase ratio\n\n\tArguments:\n\t---------\n\t\"\"\""
- source_sentence: >-
I'm planning a family game night and I need some new games to play. Can
you provide me with the details of a random card from Hearthstone and
recommend some PlayStation games with good deals?
sentences:
- "def playstation_store_deals_api_playstationdeals:\n\t\"\"\"\n\tDescription:\n\tThere is only 1 parameter for this API endpoint.\n\t\n\t1. playstation_deals/?count=0\n\t\n\tcount = 0 (Min is 0, starting of the list. Max value depends on the total number of games available.)\n\tNote: Since its a List of Items, If the maximum number of games available on deals is 771 then you have to enter (771-1) = 770 to get the last game on the deal.\n\t\n\tThis will provide you with the game data as given below which contains name, price, platform, discount percent, discounted price, total no. of games, etc..:\n\t\n\t{\n\t \"name\": \"God of War III Remastered\",\n\t \"titleId\": \"CUSA01623_00\",\n\t \"platform\": [\n\t \"PS4\"\n\t ],\n\t \"basePrice\": \"$19.99\",\n\t \"discountPercent\": \"-50%\",\n\t \"discountPrice\": \"$9.99\",\n\t \"url\": \"https://store.playstation.com/en-us/product/UP9000-CUSA01623_00-0000GODOFWAR3PS4\",\n\t \"Total No. of Games\": 771\n\t}\n\n\tArguments:\n\t---------\n\t- count : NUMBER (required)\n\t Default: 0\n\t\"\"\""
- "def captcha_verify_the_captcha:\n\t\"\"\"\n\tDescription:\n\tVerify the captcha\n\n\tArguments:\n\t---------\n\t- captcha : STRING (required)\n\t Default: Captcha Text\n\t- uuid : STRING (required)\n\t Default: UUID\n\t\"\"\""
- "def teste_getinventory:\n\t\"\"\"\n\tDescription:\n\tReturns a map of status codes to quantities\n\n\tArguments:\n\t---------\n\t\"\"\""
- source_sentence: >-
I'm conducting research on the NFT market. Could you fetch the top-selling
NFTs today and the volume and trades of the top trending collections this
month? This information will be valuable for my analysis.
sentences:
- "def icai_chartered_accountant_verification_get_call:\n\t\"\"\"\n\tDescription:\n\tUsed to fetch api result using the request id received in responses.\n\n\tArguments:\n\t---------\n\t- request_id : STRING (required)\n\t Default: 68bbb910-da9b-4d8a-9a1d-4bd878b19846\n\t\"\"\""
- "def top_nft_sales_top_nfts_today:\n\t\"\"\"\n\tDescription:\n\tTop selling NFTs today\n\n\tArguments:\n\t---------\n\t\"\"\""
- "def lorem_ipsum_api_sentence:\n\t\"\"\"\n\tDescription:\n\tCreate lorem ipsum by defining the number of sentences\n\n\tArguments:\n\t---------\n\t\"\"\""
- source_sentence: >-
I'm planning a surprise birthday party for my friend next week and I want
to gather some interesting facts and news articles about birthdays. Can
you provide me with random birthday facts and the latest news articles
related to birthdays from different sources? Additionally, please
recommend some popular party venues and catering services in my area.
sentences:
- "def reuters_business_and_financial_news_get_article_by_category_id_and_article_date:\n\t\"\"\"\n\tDescription:\n\tGet Article by category id and article date\n\tex :/api/v1/category-id-8/article-date-11-04-2021\n\t\n\tcategory - category id from Category endpoint\n\tdate-{day-month-year}\n\n\tArguments:\n\t---------\n\t- category : string (required)\n\t Default: 8\n\t- date : string (required)\n\t Default: 11-04-2021\n\t- category-id : STRING (required)\n\t Default: 8\n\t- ArticleDate : STRING (required)\n\t Default: 11-04-2021\n\t\"\"\""
- "def NPS-Net_Promoter_Score.Read_a_survey_NLP:\n\t\"\"\"\n\tDescription:\n\tGet a detail of customer survey answer by its survey id (sid), and applies to the third answer (a3) the sentiment analysis feature.\n\n\tArguments:\n\t---------\n\t- sid : string (required)\n\t\"\"\""
- "def bbc_good_food_api_categories_collections_ids:\n\t\"\"\"\n\tDescription:\n\tGet all categories collection with there names and namd id\n\n\tArguments:\n\t---------\n\t\"\"\""
- source_sentence: >-
I'm a big fan of Peruvian football and I'm curious about the competitions
and teams of televised football matches in the country. Can you provide me
with this information? Additionally, fetch me the premium tips and
historical results from the Betigolo Tips API to enhance my football
knowledge and betting strategy.
sentences:
- "def car_data_types:\n\t\"\"\"\n\tDescription:\n\tget a list of supported types\n\n\tArguments:\n\t---------\n\t\"\"\""
- "def climate_change_live_v27_get_all_climate_change_news:\n\t\"\"\"\n\tDescription:\n\tThis endpoint will return back all news about Climate Change from all over the world.\n\n\tArguments:\n\t---------\n\t\"\"\""
- "def betigolo_tips_premium_tips:\n\t\"\"\"\n\tDescription:\n\tList of active Premium Tips\n\n\tArguments:\n\t---------\n\t\"\"\""
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@1
- cosine_ndcg@3
- cosine_ndcg@5
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: SentenceTransformer based on BAAI/bge-base-en-v1.5
results:
- task:
type: device-aware-information-retrieval
name: Device Aware Information Retrieval
dataset:
name: dev
type: dev
metrics:
- type: cosine_accuracy@1
value: 0.7154639175257732
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8494845360824742
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8969072164948454
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9381443298969072
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7154639175257732
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.45979381443298967
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.31298969072164956
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.17608247422680418
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.407594501718213
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7134020618556701
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.795704467353952
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8765292096219931
name: Cosine Recall@10
- type: cosine_ndcg@1
value: 0.7154639175257732
name: Cosine Ndcg@1
- type: cosine_ndcg@3
value: 0.7055299224270164
name: Cosine Ndcg@3
- type: cosine_ndcg@5
value: 0.7418598245527984
name: Cosine Ndcg@5
- type: cosine_ndcg@10
value: 0.7759821535840169
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7923711340206183
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7207130597174141
name: Cosine Map@100
SentenceTransformer based on BAAI/bge-base-en-v1.5
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("LorMolf/mnrl-toolbench-bge-base-en-v1.5")
# Run inference
sentences = [
"I'm a big fan of Peruvian football and I'm curious about the competitions and teams of televised football matches in the country. Can you provide me with this information? Additionally, fetch me the premium tips and historical results from the Betigolo Tips API to enhance my football knowledge and betting strategy.",
'def betigolo_tips_premium_tips:\n\t"""\n\tDescription:\n\tList of active Premium Tips\n\n\tArguments:\n\t---------\n\t"""',
'def climate_change_live_v27_get_all_climate_change_news:\n\t"""\n\tDescription:\n\tThis endpoint will return back all news about Climate Change from all over the world.\n\n\tArguments:\n\t---------\n\t"""',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Device Aware Information Retrieval
- Dataset:
dev
- Evaluated with
src.port.retrieval_evaluator.DeviceAwareInformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.7155 |
cosine_accuracy@3 | 0.8495 |
cosine_accuracy@5 | 0.8969 |
cosine_accuracy@10 | 0.9381 |
cosine_precision@1 | 0.7155 |
cosine_precision@3 | 0.4598 |
cosine_precision@5 | 0.313 |
cosine_precision@10 | 0.1761 |
cosine_recall@1 | 0.4076 |
cosine_recall@3 | 0.7134 |
cosine_recall@5 | 0.7957 |
cosine_recall@10 | 0.8765 |
cosine_ndcg@1 | 0.7155 |
cosine_ndcg@3 | 0.7055 |
cosine_ndcg@5 | 0.7419 |
cosine_ndcg@10 | 0.776 |
cosine_mrr@10 | 0.7924 |
cosine_map@100 | 0.7207 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 1,000 training samples
- Columns:
sentence_0
,sentence_1
, andsentence_2
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 sentence_2 type string string string details - min: 22 tokens
- mean: 59.32 tokens
- max: 163 tokens
- min: 27 tokens
- mean: 73.59 tokens
- max: 512 tokens
- min: 28 tokens
- mean: 71.86 tokens
- max: 512 tokens
- Samples:
sentence_0 sentence_1 sentence_2 I am planning a trip to Paris from July 10th to July 15th. Can you provide me with the working hours for this period, considering the Federal holidays in France? Also, recommend some events happening in Paris during this time and send me the calendar invites for these events.
def working_days__1_3_add_working_hours:
"""
Description:
Add an amount of working time to a given start date/time
Arguments:
---------
- start_date : STRING (required)
Description: The start date (YYYY-MM-DD)
Default: 2013-12-31
- country_code : STRING (required)
Description: The ISO country code (2 letters). See available countries & configurations
Default: US
- start_time : STRING (required)
Description: The start time in a 24 hours format with leading zeros.
Default: 08:15
"""def betigolo_predictions_sample_predictions:
"""
Description:
Get a list of a sample of matches of the previous day, including predictions for many markets.
Arguments:
---------
"""I'm organizing a company event and I need to find a venue that can accommodate 100 people. Can you suggest some event spaces in the city with good reviews? Also, I would like to gather information about nearby transportation options and recommend some local catering services.
def socie_get_members:
"""
Description:
Retrieve all or some members of your community.
Arguments:
---------
"""def pinterest_apis_search_user:
"""
Description:
Search user by keyword
Arguments:
---------
- keyword : STRING (required)
Default: Trang Bui
"""I want to surprise my friends with a Netflix binge session and I'm looking for some highly ranked series. Can you provide me with a list of the top 100 ranked Netflix original series? Also, check if the word 'chimpo' is vulgar using the SHIMONETA API.
def shimoneta_send_a_word_to_check:
"""
Description:
The API returns what the word means if the word is vulgar.
Arguments:
---------
- word : STRING (required)
Default: chimpo
"""def NPS-Net_Promoter_Score.Read_a_survey_NLP:
"""
Description:
Get a detail of customer survey answer by its survey id (sid), and applies to the third answer (a3) the sentiment analysis feature.
Arguments:
---------
- sid : string (required)
""" - Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 32per_device_eval_batch_size
: 32num_train_epochs
: 5fp16
: Truemulti_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | dev_cosine_ndcg@10 |
---|---|---|
-1 | -1 | 0.6750 |
0.1875 | 6 | 0.6878 |
0.375 | 12 | 0.7236 |
0.5625 | 18 | 0.7443 |
0.75 | 24 | 0.7579 |
0.9375 | 30 | 0.7684 |
1.0 | 32 | 0.7687 |
1.125 | 36 | 0.7710 |
1.3125 | 42 | 0.7752 |
1.5 | 48 | 0.7745 |
1.6875 | 54 | 0.7795 |
1.875 | 60 | 0.7769 |
2.0 | 64 | 0.7782 |
2.0625 | 66 | 0.7793 |
2.25 | 72 | 0.7808 |
2.4375 | 78 | 0.7791 |
2.625 | 84 | 0.7794 |
2.8125 | 90 | 0.7778 |
3.0 | 96 | 0.7773 |
3.1875 | 102 | 0.7765 |
3.375 | 108 | 0.7767 |
3.5625 | 114 | 0.7760 |
3.75 | 120 | 0.7756 |
3.9375 | 126 | 0.7768 |
4.0 | 128 | 0.7766 |
4.125 | 132 | 0.7766 |
4.3125 | 138 | 0.7759 |
4.5 | 144 | 0.7760 |
4.6875 | 150 | 0.7760 |
4.875 | 156 | 0.7760 |
5.0 | 160 | 0.7760 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 4.0.2
- Transformers: 4.51.2
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 3.5.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}