|
--- |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:30000 |
|
- loss:MultipleNegativesRankingLoss |
|
base_model: BAAI/bge-base-en-v1.5 |
|
widget: |
|
- source_sentence: I need to plan a vacation from June 1st to June 10th, 2023 in the |
|
United States. Can you provide me with a list of non-working days during this |
|
period? Additionally, analyze the availability of events and obtain the details |
|
of the first event on June 3rd. Also, check the responses for this event. |
|
sentences: |
|
- "def diablo4_smartable_getsponsorships:\n\t\"\"\"\n\tDescription:\n\tGet Diablo\ |
|
\ 4 sponsorships.\n\n\tArguments:\n\t---------\n\t\"\"\"" |
|
- "def YTStream_-_Download_YouTube_Videos.Download/Stream:\n\t\"\"\"\n\tDescription:\n\ |
|
\tStream or download info.\n\n\tArguments:\n\t---------\n\t- id : STRING (required)\n\ |
|
\t Description: Youtube Video Id.\n\t Default: UxxajLWwzqY\n\t\"\"\"" |
|
- "def 31Events_-_Send_Native_Calendar_Invites.EventGet:\n\t\"\"\"\n\t\n\n\tArguments:\n\ |
|
\t---------\n\t- event_id : STRING (required)\n\t Description: Event ID\n\t \ |
|
\ Default: 1\n\t\"\"\"" |
|
- source_sentence: I'm a student working on a research project about climate change. |
|
Help me find some scientific articles and discussions on Reddit related to climate |
|
change. Provide me with the top comments so that I can understand different perspectives. |
|
Additionally, suggest some popular posts and their details that I can reference |
|
in my project. |
|
sentences: |
|
- "def reddit_posts_by_username:\n\t\"\"\"\n\tDescription:\n\tPosts By Username\n\ |
|
\n\tArguments:\n\t---------\n\t- username : STRING (required)\n\t Default: GoldenChrysus\n\ |
|
\t- sort : STRING (required)\n\t Description: you can just send `new `or `hot`\n\ |
|
\t Default: new\n\t\"\"\"" |
|
- "def microsoft_translator_text_languages:\n\t\"\"\"\n\tDescription:\n\tGets the\ |
|
\ set of languages currently supported by other operations of the Translator Text\ |
|
\ API.\n\n\tArguments:\n\t---------\n\t- api-version : STRING (required)\n\t \ |
|
\ Description: Version of the API requested by the client. Value must be **3.0**.\n\ |
|
\t Default: 3.0\n\t\"\"\"" |
|
- "def socialgrep_post_search:\n\t\"\"\"\n\tDescription:\n\tSearches Reddit posts.\n\ |
|
\n\tArguments:\n\t---------\n\t- query : STRING (required)\n\t Description: The\ |
|
\ comma-separated query for the search. Supports the following term types:\n\t\ |
|
\n\t`site:{site_name}` - search only posts where the domain matches {site_name}.\n\ |
|
\t\n\t`-site:{site_name}` - search only posts where the domain does not match\ |
|
\ {site_name}.\n\t\n\t`/r/{subreddit}` - search only posts from the subreddit\ |
|
\ {subreddit}.\n\t\n\t`-/r/{subreddit}` - search only posts not from the subreddit\ |
|
\ {subreddit}.\n\t\n\t`{term}` - search only posts with titles containing the\ |
|
\ term {term}.\n\t\n\t`-{term}` - search only posts with titles not containing\ |
|
\ the term {term}.\n\t\n\t`score:{score}` - search only posts with score at least\ |
|
\ {score}.\n\t\n\t`before:{YYYY-mm-dd}`, `after:{YYYY-mm-dd}` - search only posts\ |
|
\ within the date range. `before` is inclusive, `after` is not.\n\t Default:\ |
|
\ /r/funny,cat\n\t\"\"\"" |
|
- source_sentence: I'm planning a weekend getaway with my friends and we want to watch |
|
a football match. Can you provide me with the list of fixture IDs for the matches |
|
scheduled for next month? Also, show me the league table and stats for the home |
|
team of the match with ID 81930. Additionally, scrape the contacts from the website |
|
of the home team to get their email and social media profiles. |
|
sentences: |
|
- "def coinranking_get_coin_exchanges:\n\t\"\"\"\n\tDescription:\n\tFind exchanges\ |
|
\ where a specific coin can be traded.\n\tThis endpoint requires the **ultra**\ |
|
\ plan or higher.\n\n\tArguments:\n\t---------\n\t- uuid : string (required)\n\ |
|
\t Description: UUID of the coin you want to request exchanges for\n\t Default:\ |
|
\ Qwsogvtv82FCd\n\t\"\"\"" |
|
- "def football_prediction_get_list_of_fixture_ids:\n\t\"\"\"\n\tDescription:\n\t\ |
|
Returns a list of fixture IDs that can be used to make requests to endpoints expecting\ |
|
\ a ID url parameter.\n\tCan be filtered by:\n\t\n\t- iso_date\n\t- market\n\t\ |
|
- federation\n\n\tArguments:\n\t---------\n\t\"\"\"" |
|
- "def open_brewery_db_breweries:\n\t\"\"\"\n\tDescription:\n\tList of Breweries\n\ |
|
\n\tArguments:\n\t---------\n\t\"\"\"" |
|
- source_sentence: I'm organizing a movie marathon and I need a mix of genres. Can |
|
you recommend highly rated movies from various genres available on streaming services |
|
like Netflix, Prime Video, Hulu, and Peacock? Additionally, provide me with the |
|
TV schedule for tonight's movies. |
|
sentences: |
|
- "def streaming_availability_genres_free:\n\t\"\"\"\n\tDescription:\n\tGet the\ |
|
\ id to name mapping of supported genres.\n\n\tArguments:\n\t---------\n\t\"\"\ |
|
\"" |
|
- "def solcast_simple_pv_power_forecast:\n\t\"\"\"\n\tDescription:\n\tThe simple\ |
|
\ PV power request returns a first-guess PV power output forecast, based on your\ |
|
\ specified latitude and longitude plus some basic PV system characteristics.\n\ |
|
\n\tArguments:\n\t---------\n\t- capacity : NUMBER (required)\n\t Description:\ |
|
\ The capacity of the system, in Watts.\n\t Default: 0\n\t- latitude : NUMBER\ |
|
\ (required)\n\t Description: Latitude\n\t- longitude : NUMBER (required)\n\t\ |
|
\ Description: Longitude\n\t\"\"\"" |
|
- "def kargom_nerede_companies:\n\t\"\"\"\n\tDescription:\n\tCompanies\n\n\tArguments:\n\ |
|
\t---------\n\t\"\"\"" |
|
- source_sentence: I'm a food blogger and I need some interesting facts for my next |
|
article. Fetch a random fact about a specific number and provide a historical |
|
fact about a famous year. Additionally, recommend a genre of music to set the |
|
mood for writing. |
|
sentences: |
|
- "def dicolink_get_lexical_field:\n\t\"\"\"\n\tDescription:\n\tGet Lexical Field\ |
|
\ for a word\n\n\tArguments:\n\t---------\n\t- mot : string (required)\n\t Default:\ |
|
\ cheval\n\t\"\"\"" |
|
- "def geodb_cities_places_near_location:\n\t\"\"\"\n\tDescription:\n\tGet places\ |
|
\ near the given location, filtering by optional criteria.\n\n\tArguments:\n\t\ |
|
---------\n\t- radius : STRING (required)\n\t Description: The location radius\ |
|
\ within which to find places\n\t Default: 100\n\t- locationid : STRING (required)\n\ |
|
\t Description: Only cities near this location. Latitude/longitude in ISO-6709\ |
|
\ format: ±DD.DDDD±DDD.DDDD\n\t Default: 33.832213-118.387099\n\t\"\"\"" |
|
- "def deezer_genre:\n\t\"\"\"\n\tDescription:\n\tA genre object\n\n\tArguments:\n\ |
|
\t---------\n\t- id : STRING (required)\n\t Description: The editorial's Deezer\ |
|
\ id\n\t\"\"\"" |
|
pipeline_tag: sentence-similarity |
|
library_name: sentence-transformers |
|
metrics: |
|
- cosine_accuracy@1 |
|
- cosine_accuracy@3 |
|
- cosine_accuracy@5 |
|
- cosine_accuracy@10 |
|
- cosine_precision@1 |
|
- cosine_precision@3 |
|
- cosine_precision@5 |
|
- cosine_precision@10 |
|
- cosine_recall@1 |
|
- cosine_recall@3 |
|
- cosine_recall@5 |
|
- cosine_recall@10 |
|
- cosine_ndcg@1 |
|
- cosine_ndcg@3 |
|
- cosine_ndcg@5 |
|
- cosine_ndcg@10 |
|
- cosine_mrr@10 |
|
- cosine_map@100 |
|
model-index: |
|
- name: SentenceTransformer based on BAAI/bge-base-en-v1.5 |
|
results: |
|
- task: |
|
type: device-aware-information-retrieval |
|
name: Device Aware Information Retrieval |
|
dataset: |
|
name: dev |
|
type: dev |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.66 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.82 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.88 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.95 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.66 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.4833333333333333 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.3600000000000001 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.21800000000000005 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.25066666666666665 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.5509999999999999 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.6613333333333332 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.7801666666666667 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@1 |
|
value: 0.66 |
|
name: Cosine Ndcg@1 |
|
- type: cosine_ndcg@3 |
|
value: 0.582592770063282 |
|
name: Cosine Ndcg@3 |
|
- type: cosine_ndcg@5 |
|
value: 0.633788337516139 |
|
name: Cosine Ndcg@5 |
|
- type: cosine_ndcg@10 |
|
value: 0.6889055410848939 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.7467063492063493 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.629168458376448 |
|
name: Cosine Map@100 |
|
--- |
|
|
|
# SentenceTransformer based on BAAI/bge-base-en-v1.5 |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 768 dimensions |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Normalize() |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("LorMolf/mnrl-toolbench-bge-base-en-v1.5") |
|
# Run inference |
|
sentences = [ |
|
"I'm a food blogger and I need some interesting facts for my next article. Fetch a random fact about a specific number and provide a historical fact about a famous year. Additionally, recommend a genre of music to set the mood for writing.", |
|
'def deezer_genre:\n\t"""\n\tDescription:\n\tA genre object\n\n\tArguments:\n\t---------\n\t- id : STRING (required)\n\t Description: The editorial\'s Deezer id\n\t"""', |
|
'def dicolink_get_lexical_field:\n\t"""\n\tDescription:\n\tGet Lexical Field for a word\n\n\tArguments:\n\t---------\n\t- mot : string (required)\n\t Default: cheval\n\t"""', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Device Aware Information Retrieval |
|
|
|
* Dataset: `dev` |
|
* Evaluated with <code>src.port.retrieval_evaluator.DeviceAwareInformationRetrievalEvaluator</code> |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.66 | |
|
| cosine_accuracy@3 | 0.82 | |
|
| cosine_accuracy@5 | 0.88 | |
|
| cosine_accuracy@10 | 0.95 | |
|
| cosine_precision@1 | 0.66 | |
|
| cosine_precision@3 | 0.4833 | |
|
| cosine_precision@5 | 0.36 | |
|
| cosine_precision@10 | 0.218 | |
|
| cosine_recall@1 | 0.2507 | |
|
| cosine_recall@3 | 0.551 | |
|
| cosine_recall@5 | 0.6613 | |
|
| cosine_recall@10 | 0.7802 | |
|
| cosine_ndcg@1 | 0.66 | |
|
| cosine_ndcg@3 | 0.5826 | |
|
| cosine_ndcg@5 | 0.6338 | |
|
| **cosine_ndcg@10** | **0.6889** | |
|
| cosine_mrr@10 | 0.7467 | |
|
| cosine_map@100 | 0.6292 | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
* Size: 30,000 training samples |
|
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>sentence_2</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence_0 | sentence_1 | sentence_2 | |
|
|:--------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------| |
|
| type | string | string | string | |
|
| details | <ul><li>min: 29 tokens</li><li>mean: 61.36 tokens</li><li>max: 133 tokens</li></ul> | <ul><li>min: 28 tokens</li><li>mean: 82.89 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 26 tokens</li><li>mean: 85.81 tokens</li><li>max: 512 tokens</li></ul> | |
|
* Samples: |
|
| sentence_0 | sentence_1 | sentence_2 | |
|
|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| <code>My family and I are planning a beach vacation in Florida next month. Can you provide us with the current weather conditions, active alerts, and station details for Miami and Orlando? Additionally, we would like a radiation forecast to plan our outdoor activities.</code> | <code>def solcast_simple_radiation_forecast:<br> """<br> Description:<br> The simple radiation request returns detailed solar radiation data for the next week based only on your latitude and longitude.<br><br> Arguments:<br> ---------<br> - latitude : NUMBER (required)<br> Description: Latitude<br> - longitude : NUMBER (required)<br> Description: Longitude<br> """</code> | <code>def uk_boundaries_io_retrieve_uk_postal_district_outline_boundaries:<br> """<br> Description:<br> example: Query by "TW12" district<br><br> Arguments:<br> ---------<br> - postal-district : STRING (required)<br> Description: Query by postal district code.<br> Default: TW12<br> """</code> | |
|
| <code>I am planning a vacation to a tropical destination and I need some information to make the most of my trip. Can you please provide me with the current weather data for a location with latitude 25.5 and longitude -80.5? Additionally, I would like a 16-day forecast for this location. Furthermore, I am interested in knowing the available cities in the country associated with this location. Lastly, please suggest some popular tourist attractions in this country.</code> | <code>def weather_forecast_14_days_list_of_cities_in_one_country:<br> """<br> Description:<br> List of cities in one Country<br><br> Arguments:<br> ---------<br> """</code> | <code>def Billboard-API.Brazil_Songs:<br> """<br> Description:<br> Provide the Brazil Songs chart information<br><br> Arguments:<br> ---------<br> - date : DATE (YYYY-MM-DD) (required)<br> Description: date format(YYYY-MM-DD)<br> Default: 2022-05-07<br> - range : STRING (required)<br> Default: 1-10<br> """</code> | |
|
| <code>I want to surprise my family with a special dinner tonight. Can you suggest some quick and easy recipes for a main course? Also, provide me with the list of ingredients required for each recipe. Additionally, I would like to know the plant hardiness zone for our area, which is zip code 90210.</code> | <code>def yummly_feeds_list:<br> """<br> Description:<br> List feeds by category<br><br> Arguments:<br> ---------<br> - start : NUMBER (required)<br> Description: The offset of items to be ignored in response for paging<br> Default: 0<br> - limit : NUMBER (required)<br> Description: Number of items returned per response<br> Default: 24<br> """</code> | <code>def line_messaging_get_number_of_sent_reply_messages:<br> """<br> Description:<br> Gets the number of messages sent with the /bot/message/reply endpoint.<br><br> Arguments:<br> ---------<br> - date : STRING (required)<br> Description: Date the messages were sent. Format: yyyyMMdd (Example: 20191231) Timezone: UTC+9<br> """</code> | |
|
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: |
|
```json |
|
{ |
|
"scale": 20.0, |
|
"similarity_fct": "cos_sim" |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 2 |
|
- `per_device_eval_batch_size`: 2 |
|
- `num_train_epochs`: 1 |
|
- `fp16`: True |
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 2 |
|
- `per_device_eval_batch_size`: 2 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 1 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.0 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: True |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `tp_size`: 0 |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: None |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `include_for_metrics`: [] |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `use_liger_kernel`: False |
|
- `eval_use_gather_object`: False |
|
- `average_tokens_across_devices`: False |
|
- `prompts`: None |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | dev_cosine_ndcg@10 | |
|
|:------:|:-----:|:-------------:|:------------------:| |
|
| -1 | -1 | - | 0.6031 | |
|
| 0.0333 | 500 | 0.3188 | - | |
|
| 0.0667 | 1000 | 0.2079 | - | |
|
| 0.1 | 1500 | 0.2178 | - | |
|
| 0.1333 | 2000 | 0.186 | - | |
|
| 0.1667 | 2500 | 0.1665 | - | |
|
| 0.2 | 3000 | 0.205 | 0.6953 | |
|
| 0.2333 | 3500 | 0.149 | - | |
|
| 0.2667 | 4000 | 0.1691 | - | |
|
| 0.3 | 4500 | 0.1703 | - | |
|
| 0.3333 | 5000 | 0.1588 | - | |
|
| 0.3667 | 5500 | 0.1348 | - | |
|
| 0.4 | 6000 | 0.1625 | 0.6639 | |
|
| 0.4333 | 6500 | 0.1415 | - | |
|
| 0.4667 | 7000 | 0.13 | - | |
|
| 0.5 | 7500 | 0.1271 | - | |
|
| 0.5333 | 8000 | 0.1058 | - | |
|
| 0.5667 | 8500 | 0.1031 | - | |
|
| 0.6 | 9000 | 0.1026 | 0.6860 | |
|
| 0.6333 | 9500 | 0.1031 | - | |
|
| 0.6667 | 10000 | 0.1248 | - | |
|
| 0.7 | 10500 | 0.0909 | - | |
|
| 0.7333 | 11000 | 0.1055 | - | |
|
| 0.7667 | 11500 | 0.101 | - | |
|
| 0.8 | 12000 | 0.0598 | 0.6778 | |
|
| 0.8333 | 12500 | 0.0949 | - | |
|
| 0.8667 | 13000 | 0.062 | - | |
|
| 0.9 | 13500 | 0.1129 | - | |
|
| 0.9333 | 14000 | 0.1106 | - | |
|
| 0.9667 | 14500 | 0.0653 | - | |
|
| 1.0 | 15000 | 0.0669 | 0.6889 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- Sentence Transformers: 4.0.2 |
|
- Transformers: 4.51.2 |
|
- PyTorch: 2.6.0+cu124 |
|
- Accelerate: 1.6.0 |
|
- Datasets: 3.5.0 |
|
- Tokenizers: 0.21.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |