LorMolf commited on
Commit
8fe684b
·
verified ·
1 Parent(s): 1141abe

Add final trained model

Browse files
Files changed (2) hide show
  1. README.md +174 -162
  2. model.safetensors +1 -1
README.md CHANGED
@@ -4,90 +4,102 @@ tags:
4
  - sentence-similarity
5
  - feature-extraction
6
  - generated_from_trainer
7
- - dataset_size:1000
8
  - loss:MultipleNegativesRankingLoss
9
  base_model: BAAI/bge-base-en-v1.5
10
  widget:
11
- - source_sentence: I'm organizing a surprise party for my sister and I need synonyms
12
- for the word 'celebrate'. Could you also provide the lexical field for the word
13
- 'birthday' and the Scrabble score for the word 'festivity'? Moreover, search for
14
- translations of the phrase 'Happy anniversary' from English to French using the
15
- MyMemory Translation Memory API.
16
  sentences:
17
- - "def endlessmedicalapi_getoutcomes:\n\t\"\"\"\n\tDescription:\n\tGetOutcomes\n\
18
- \n\tArguments:\n\t---------\n\t\"\"\""
19
- - "def dicolink_get_lexical_field:\n\t\"\"\"\n\tDescription:\n\tGet Lexical Field\
20
- \ for a word\n\n\tArguments:\n\t---------\n\t- mot : string (required)\n\t Default:\
21
- \ cheval\n\t\"\"\""
22
- - "def Indie_Songs_:_DistroKid_&_Unsigned.Get_Top_50_indie_songs:\n\t\"\"\"\n\t\
23
- Description:\n\tGet TOP 50 indie songs based on their daily stream increase ratio\n\
24
- \n\tArguments:\n\t---------\n\t\"\"\""
25
- - source_sentence: I'm planning a family game night and I need some new games to play.
26
- Can you provide me with the details of a random card from Hearthstone and recommend
27
- some PlayStation games with good deals?
 
 
28
  sentences:
29
- - "def playstation_store_deals_api_playstationdeals:\n\t\"\"\"\n\tDescription:\n\
30
- \tThere is only 1 parameter for this API endpoint.\n\t\n\t1. playstation_deals/?count=0\n\
31
- \t\n\tcount = 0 (Min is 0, starting of the list. Max value depends on the total\
32
- \ number of games available.)\n\tNote: Since its a List of Items, If the maximum\
33
- \ number of games available on deals is 771 then you have to enter (771-1) = 770\
34
- \ to get the last game on the deal.\n\t\n\tThis will provide you with the game\
35
- \ data as given below which contains name, price, platform, discount percent,\
36
- \ discounted price, total no. of games, etc..:\n\t\n\t{\n\t \"name\": \"God of\
37
- \ War III Remastered\",\n\t \"titleId\": \"CUSA01623_00\",\n\t \"platform\"\
38
- : [\n\t \"PS4\"\n\t ],\n\t \"basePrice\": \"$19.99\",\n\t \"discountPercent\"\
39
- : \"-50%\",\n\t \"discountPrice\": \"$9.99\",\n\t \"url\": \"https://store.playstation.com/en-us/product/UP9000-CUSA01623_00-0000GODOFWAR3PS4\"\
40
- ,\n\t \"Total No. of Games\": 771\n\t}\n\n\tArguments:\n\t---------\n\t- count\
41
- \ : NUMBER (required)\n\t Default: 0\n\t\"\"\""
42
- - "def captcha_verify_the_captcha:\n\t\"\"\"\n\tDescription:\n\tVerify the captcha\n\
43
- \n\tArguments:\n\t---------\n\t- captcha : STRING (required)\n\t Default: Captcha\
44
- \ Text\n\t- uuid : STRING (required)\n\t Default: UUID\n\t\"\"\""
45
- - "def teste_getinventory:\n\t\"\"\"\n\tDescription:\n\tReturns a map of status\
46
- \ codes to quantities\n\n\tArguments:\n\t---------\n\t\"\"\""
47
- - source_sentence: I'm conducting research on the NFT market. Could you fetch the
48
- top-selling NFTs today and the volume and trades of the top trending collections
49
- this month? This information will be valuable for my analysis.
 
 
 
 
 
 
50
  sentences:
51
- - "def icai_chartered_accountant_verification_get_call:\n\t\"\"\"\n\tDescription:\n\
52
- \tUsed to fetch api result using the request id received in responses.\n\n\tArguments:\n\
53
- \t---------\n\t- request_id : STRING (required)\n\t Default: 68bbb910-da9b-4d8a-9a1d-4bd878b19846\n\
54
- \t\"\"\""
55
- - "def top_nft_sales_top_nfts_today:\n\t\"\"\"\n\tDescription:\n\tTop selling NFTs\
56
- \ today\n\n\tArguments:\n\t---------\n\t\"\"\""
57
- - "def lorem_ipsum_api_sentence:\n\t\"\"\"\n\tDescription:\n\tCreate lorem ipsum\
58
- \ by defining the number of sentences\n\n\tArguments:\n\t---------\n\t\"\"\""
59
- - source_sentence: I'm planning a surprise birthday party for my friend next week
60
- and I want to gather some interesting facts and news articles about birthdays.
61
- Can you provide me with random birthday facts and the latest news articles related
62
- to birthdays from different sources? Additionally, please recommend some popular
63
- party venues and catering services in my area.
 
 
64
  sentences:
65
- - "def reuters_business_and_financial_news_get_article_by_category_id_and_article_date:\n\
66
- \t\"\"\"\n\tDescription:\n\tGet Article by category id and article date\n\tex\
67
- \ :/api/v1/category-id-8/article-date-11-04-2021\n\t\n\tcategory - category id\
68
- \ from Category endpoint\n\tdate-{day-month-year}\n\n\tArguments:\n\t---------\n\
69
- \t- category : string (required)\n\t Default: 8\n\t- date : string (required)\n\
70
- \t Default: 11-04-2021\n\t- category-id : STRING (required)\n\t Default: 8\n\
71
- \t- ArticleDate : STRING (required)\n\t Default: 11-04-2021\n\t\"\"\""
72
- - "def NPS-Net_Promoter_Score.Read_a_survey_NLP:\n\t\"\"\"\n\tDescription:\n\tGet\
73
- \ a detail of customer survey answer by its survey id (sid), and applies to the\
74
- \ third answer (a3) the sentiment analysis feature.\n\n\tArguments:\n\t---------\n\
75
- \t- sid : string (required)\n\t\"\"\""
76
- - "def bbc_good_food_api_categories_collections_ids:\n\t\"\"\"\n\tDescription:\n\
77
- \tGet all categories collection with there names and namd id\n\n\tArguments:\n\
78
  \t---------\n\t\"\"\""
79
- - source_sentence: I'm a big fan of Peruvian football and I'm curious about the competitions
80
- and teams of televised football matches in the country. Can you provide me with
81
- this information? Additionally, fetch me the premium tips and historical results
82
- from the Betigolo Tips API to enhance my football knowledge and betting strategy.
83
  sentences:
84
- - "def car_data_types:\n\t\"\"\"\n\tDescription:\n\tget a list of supported types\n\
85
- \n\tArguments:\n\t---------\n\t\"\"\""
86
- - "def climate_change_live_v27_get_all_climate_change_news:\n\t\"\"\"\n\tDescription:\n\
87
- \tThis endpoint will return back all news about Climate Change from all over the\
88
- \ world.\n\n\tArguments:\n\t---------\n\t\"\"\""
89
- - "def betigolo_tips_premium_tips:\n\t\"\"\"\n\tDescription:\n\tList of active Premium\
90
- \ Tips\n\n\tArguments:\n\t---------\n\t\"\"\""
 
 
 
 
 
91
  pipeline_tag: sentence-similarity
92
  library_name: sentence-transformers
93
  metrics:
@@ -120,58 +132,58 @@ model-index:
120
  type: dev
121
  metrics:
122
  - type: cosine_accuracy@1
123
- value: 0.7154639175257732
124
  name: Cosine Accuracy@1
125
  - type: cosine_accuracy@3
126
- value: 0.8494845360824742
127
  name: Cosine Accuracy@3
128
  - type: cosine_accuracy@5
129
- value: 0.8969072164948454
130
  name: Cosine Accuracy@5
131
  - type: cosine_accuracy@10
132
- value: 0.9381443298969072
133
  name: Cosine Accuracy@10
134
  - type: cosine_precision@1
135
- value: 0.7154639175257732
136
  name: Cosine Precision@1
137
  - type: cosine_precision@3
138
- value: 0.45979381443298967
139
  name: Cosine Precision@3
140
  - type: cosine_precision@5
141
- value: 0.31298969072164956
142
  name: Cosine Precision@5
143
  - type: cosine_precision@10
144
- value: 0.17608247422680418
145
  name: Cosine Precision@10
146
  - type: cosine_recall@1
147
- value: 0.407594501718213
148
  name: Cosine Recall@1
149
  - type: cosine_recall@3
150
- value: 0.7134020618556701
151
  name: Cosine Recall@3
152
  - type: cosine_recall@5
153
- value: 0.795704467353952
154
  name: Cosine Recall@5
155
  - type: cosine_recall@10
156
- value: 0.8765292096219931
157
  name: Cosine Recall@10
158
  - type: cosine_ndcg@1
159
- value: 0.7154639175257732
160
  name: Cosine Ndcg@1
161
  - type: cosine_ndcg@3
162
- value: 0.7055299224270164
163
  name: Cosine Ndcg@3
164
  - type: cosine_ndcg@5
165
- value: 0.7418598245527984
166
  name: Cosine Ndcg@5
167
  - type: cosine_ndcg@10
168
- value: 0.7759821535840169
169
  name: Cosine Ndcg@10
170
  - type: cosine_mrr@10
171
- value: 0.7923711340206183
172
  name: Cosine Mrr@10
173
  - type: cosine_map@100
174
- value: 0.7207130597174141
175
  name: Cosine Map@100
176
  ---
177
 
@@ -225,9 +237,9 @@ from sentence_transformers import SentenceTransformer
225
  model = SentenceTransformer("LorMolf/mnrl-toolbench-bge-base-en-v1.5")
226
  # Run inference
227
  sentences = [
228
- "I'm a big fan of Peruvian football and I'm curious about the competitions and teams of televised football matches in the country. Can you provide me with this information? Additionally, fetch me the premium tips and historical results from the Betigolo Tips API to enhance my football knowledge and betting strategy.",
229
- 'def betigolo_tips_premium_tips:\n\t"""\n\tDescription:\n\tList of active Premium Tips\n\n\tArguments:\n\t---------\n\t"""',
230
- 'def climate_change_live_v27_get_all_climate_change_news:\n\t"""\n\tDescription:\n\tThis endpoint will return back all news about Climate Change from all over the world.\n\n\tArguments:\n\t---------\n\t"""',
231
  ]
232
  embeddings = model.encode(sentences)
233
  print(embeddings.shape)
@@ -272,26 +284,26 @@ You can finetune this model on your own dataset.
272
  * Dataset: `dev`
273
  * Evaluated with <code>src.port.retrieval_evaluator.DeviceAwareInformationRetrievalEvaluator</code>
274
 
275
- | Metric | Value |
276
- |:--------------------|:----------|
277
- | cosine_accuracy@1 | 0.7155 |
278
- | cosine_accuracy@3 | 0.8495 |
279
- | cosine_accuracy@5 | 0.8969 |
280
- | cosine_accuracy@10 | 0.9381 |
281
- | cosine_precision@1 | 0.7155 |
282
- | cosine_precision@3 | 0.4598 |
283
- | cosine_precision@5 | 0.313 |
284
- | cosine_precision@10 | 0.1761 |
285
- | cosine_recall@1 | 0.4076 |
286
- | cosine_recall@3 | 0.7134 |
287
- | cosine_recall@5 | 0.7957 |
288
- | cosine_recall@10 | 0.8765 |
289
- | cosine_ndcg@1 | 0.7155 |
290
- | cosine_ndcg@3 | 0.7055 |
291
- | cosine_ndcg@5 | 0.7419 |
292
- | **cosine_ndcg@10** | **0.776** |
293
- | cosine_mrr@10 | 0.7924 |
294
- | cosine_map@100 | 0.7207 |
295
 
296
  <!--
297
  ## Bias, Risks and Limitations
@@ -311,19 +323,19 @@ You can finetune this model on your own dataset.
311
 
312
  #### Unnamed Dataset
313
 
314
- * Size: 1,000 training samples
315
  * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>sentence_2</code>
316
  * Approximate statistics based on the first 1000 samples:
317
  | | sentence_0 | sentence_1 | sentence_2 |
318
  |:--------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
319
  | type | string | string | string |
320
- | details | <ul><li>min: 22 tokens</li><li>mean: 59.32 tokens</li><li>max: 163 tokens</li></ul> | <ul><li>min: 27 tokens</li><li>mean: 73.59 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 28 tokens</li><li>mean: 71.86 tokens</li><li>max: 512 tokens</li></ul> |
321
  * Samples:
322
- | sentence_0 | sentence_1 | sentence_2 |
323
- |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
324
- | <code>I am planning a trip to Paris from July 10th to July 15th. Can you provide me with the working hours for this period, considering the Federal holidays in France? Also, recommend some events happening in Paris during this time and send me the calendar invites for these events.</code> | <code>def working_days__1_3_add_working_hours:<br> """<br> Description:<br> Add an amount of working time to a given start date/time<br><br> Arguments:<br> ---------<br> - start_date : STRING (required)<br> Description: The start date (YYYY-MM-DD)<br> Default: 2013-12-31<br> - country_code : STRING (required)<br> Description: The ISO country code (2 letters). See <a href=https://api.workingdays.org/api-countries >available countries & configurations</a><br> Default: US<br> - start_time : STRING (required)<br> Description: The start time in a 24 hours format with leading zeros.<br> Default: 08:15<br> """</code> | <code>def betigolo_predictions_sample_predictions:<br> """<br> Description:<br> Get a list of a sample of matches of the previous day, including predictions for many markets.<br><br> Arguments:<br> ---------<br> """</code> |
325
- | <code>I'm organizing a company event and I need to find a venue that can accommodate 100 people. Can you suggest some event spaces in the city with good reviews? Also, I would like to gather information about nearby transportation options and recommend some local catering services.</code> | <code>def socie_get_members:<br> """<br> Description:<br> Retrieve all or some members of your community.<br><br> Arguments:<br> ---------<br> """</code> | <code>def pinterest_apis_search_user:<br> """<br> Description:<br> Search user by keyword<br><br> Arguments:<br> ---------<br> - keyword : STRING (required)<br> Default: Trang Bui<br> """</code> |
326
- | <code>I want to surprise my friends with a Netflix binge session and I'm looking for some highly ranked series. Can you provide me with a list of the top 100 ranked Netflix original series? Also, check if the word 'chimpo' is vulgar using the SHIMONETA API.</code> | <code>def shimoneta_send_a_word_to_check:<br> """<br> Description:<br> The API returns what the word means if the word is vulgar.<br><br> Arguments:<br> ---------<br> - word : STRING (required)<br> Default: chimpo<br> """</code> | <code>def NPS-Net_Promoter_Score.Read_a_survey_NLP:<br> """<br> Description:<br> Get a detail of customer survey answer by its survey id (sid), and applies to the third answer (a3) the sentiment analysis feature.<br><br> Arguments:<br> ---------<br> - sid : string (required)<br> """</code> |
327
  * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
328
  ```json
329
  {
@@ -336,9 +348,9 @@ You can finetune this model on your own dataset.
336
  #### Non-Default Hyperparameters
337
 
338
  - `eval_strategy`: steps
339
- - `per_device_train_batch_size`: 32
340
- - `per_device_eval_batch_size`: 32
341
- - `num_train_epochs`: 5
342
  - `fp16`: True
343
  - `multi_dataset_batch_sampler`: round_robin
344
 
@@ -349,8 +361,8 @@ You can finetune this model on your own dataset.
349
  - `do_predict`: False
350
  - `eval_strategy`: steps
351
  - `prediction_loss_only`: True
352
- - `per_device_train_batch_size`: 32
353
- - `per_device_eval_batch_size`: 32
354
  - `per_gpu_train_batch_size`: None
355
  - `per_gpu_eval_batch_size`: None
356
  - `gradient_accumulation_steps`: 1
@@ -362,7 +374,7 @@ You can finetune this model on your own dataset.
362
  - `adam_beta2`: 0.999
363
  - `adam_epsilon`: 1e-08
364
  - `max_grad_norm`: 1.0
365
- - `num_train_epochs`: 5
366
  - `max_steps`: -1
367
  - `lr_scheduler_type`: linear
368
  - `lr_scheduler_kwargs`: {}
@@ -463,39 +475,39 @@ You can finetune this model on your own dataset.
463
  </details>
464
 
465
  ### Training Logs
466
- | Epoch | Step | dev_cosine_ndcg@10 |
467
- |:------:|:----:|:------------------:|
468
- | -1 | -1 | 0.6750 |
469
- | 0.1875 | 6 | 0.6878 |
470
- | 0.375 | 12 | 0.7236 |
471
- | 0.5625 | 18 | 0.7443 |
472
- | 0.75 | 24 | 0.7579 |
473
- | 0.9375 | 30 | 0.7684 |
474
- | 1.0 | 32 | 0.7687 |
475
- | 1.125 | 36 | 0.7710 |
476
- | 1.3125 | 42 | 0.7752 |
477
- | 1.5 | 48 | 0.7745 |
478
- | 1.6875 | 54 | 0.7795 |
479
- | 1.875 | 60 | 0.7769 |
480
- | 2.0 | 64 | 0.7782 |
481
- | 2.0625 | 66 | 0.7793 |
482
- | 2.25 | 72 | 0.7808 |
483
- | 2.4375 | 78 | 0.7791 |
484
- | 2.625 | 84 | 0.7794 |
485
- | 2.8125 | 90 | 0.7778 |
486
- | 3.0 | 96 | 0.7773 |
487
- | 3.1875 | 102 | 0.7765 |
488
- | 3.375 | 108 | 0.7767 |
489
- | 3.5625 | 114 | 0.7760 |
490
- | 3.75 | 120 | 0.7756 |
491
- | 3.9375 | 126 | 0.7768 |
492
- | 4.0 | 128 | 0.7766 |
493
- | 4.125 | 132 | 0.7766 |
494
- | 4.3125 | 138 | 0.7759 |
495
- | 4.5 | 144 | 0.7760 |
496
- | 4.6875 | 150 | 0.7760 |
497
- | 4.875 | 156 | 0.7760 |
498
- | 5.0 | 160 | 0.7760 |
499
 
500
 
501
  ### Framework Versions
 
4
  - sentence-similarity
5
  - feature-extraction
6
  - generated_from_trainer
7
+ - dataset_size:30000
8
  - loss:MultipleNegativesRankingLoss
9
  base_model: BAAI/bge-base-en-v1.5
10
  widget:
11
+ - source_sentence: I need to plan a vacation from June 1st to June 10th, 2023 in the
12
+ United States. Can you provide me with a list of non-working days during this
13
+ period? Additionally, analyze the availability of events and obtain the details
14
+ of the first event on June 3rd. Also, check the responses for this event.
 
15
  sentences:
16
+ - "def diablo4_smartable_getsponsorships:\n\t\"\"\"\n\tDescription:\n\tGet Diablo\
17
+ \ 4 sponsorships.\n\n\tArguments:\n\t---------\n\t\"\"\""
18
+ - "def YTStream_-_Download_YouTube_Videos.Download/Stream:\n\t\"\"\"\n\tDescription:\n\
19
+ \tStream or download info.\n\n\tArguments:\n\t---------\n\t- id : STRING (required)\n\
20
+ \t Description: Youtube Video Id.\n\t Default: UxxajLWwzqY\n\t\"\"\""
21
+ - "def 31Events_-_Send_Native_Calendar_Invites.EventGet:\n\t\"\"\"\n\t\n\n\tArguments:\n\
22
+ \t---------\n\t- event_id : STRING (required)\n\t Description: Event ID\n\t \
23
+ \ Default: 1\n\t\"\"\""
24
+ - source_sentence: I'm a student working on a research project about climate change.
25
+ Help me find some scientific articles and discussions on Reddit related to climate
26
+ change. Provide me with the top comments so that I can understand different perspectives.
27
+ Additionally, suggest some popular posts and their details that I can reference
28
+ in my project.
29
  sentences:
30
+ - "def reddit_posts_by_username:\n\t\"\"\"\n\tDescription:\n\tPosts By Username\n\
31
+ \n\tArguments:\n\t---------\n\t- username : STRING (required)\n\t Default: GoldenChrysus\n\
32
+ \t- sort : STRING (required)\n\t Description: you can just send `new `or `hot`\n\
33
+ \t Default: new\n\t\"\"\""
34
+ - "def microsoft_translator_text_languages:\n\t\"\"\"\n\tDescription:\n\tGets the\
35
+ \ set of languages currently supported by other operations of the Translator Text\
36
+ \ API.\n\n\tArguments:\n\t---------\n\t- api-version : STRING (required)\n\t \
37
+ \ Description: Version of the API requested by the client. Value must be **3.0**.\n\
38
+ \t Default: 3.0\n\t\"\"\""
39
+ - "def socialgrep_post_search:\n\t\"\"\"\n\tDescription:\n\tSearches Reddit posts.\n\
40
+ \n\tArguments:\n\t---------\n\t- query : STRING (required)\n\t Description: The\
41
+ \ comma-separated query for the search. Supports the following term types:\n\t\
42
+ \n\t`site:{site_name}` - search only posts where the domain matches {site_name}.\n\
43
+ \t\n\t`-site:{site_name}` - search only posts where the domain does not match\
44
+ \ {site_name}.\n\t\n\t`/r/{subreddit}` - search only posts from the subreddit\
45
+ \ {subreddit}.\n\t\n\t`-/r/{subreddit}` - search only posts not from the subreddit\
46
+ \ {subreddit}.\n\t\n\t`{term}` - search only posts with titles containing the\
47
+ \ term {term}.\n\t\n\t`-{term}` - search only posts with titles not containing\
48
+ \ the term {term}.\n\t\n\t`score:{score}` - search only posts with score at least\
49
+ \ {score}.\n\t\n\t`before:{YYYY-mm-dd}`, `after:{YYYY-mm-dd}` - search only posts\
50
+ \ within the date range. `before` is inclusive, `after` is not.\n\t Default:\
51
+ \ /r/funny,cat\n\t\"\"\""
52
+ - source_sentence: I'm planning a weekend getaway with my friends and we want to watch
53
+ a football match. Can you provide me with the list of fixture IDs for the matches
54
+ scheduled for next month? Also, show me the league table and stats for the home
55
+ team of the match with ID 81930. Additionally, scrape the contacts from the website
56
+ of the home team to get their email and social media profiles.
57
  sentences:
58
+ - "def coinranking_get_coin_exchanges:\n\t\"\"\"\n\tDescription:\n\tFind exchanges\
59
+ \ where a specific coin can be traded.\n\tThis endpoint requires the **ultra**\
60
+ \ plan or higher.\n\n\tArguments:\n\t---------\n\t- uuid : string (required)\n\
61
+ \t Description: UUID of the coin you want to request exchanges for\n\t Default:\
62
+ \ Qwsogvtv82FCd\n\t\"\"\""
63
+ - "def football_prediction_get_list_of_fixture_ids:\n\t\"\"\"\n\tDescription:\n\t\
64
+ Returns a list of fixture IDs that can be used to make requests to endpoints expecting\
65
+ \ a ID url parameter.\n\tCan be filtered by:\n\t\n\t- iso_date\n\t- market\n\t\
66
+ - federation\n\n\tArguments:\n\t---------\n\t\"\"\""
67
+ - "def open_brewery_db_breweries:\n\t\"\"\"\n\tDescription:\n\tList of Breweries\n\
68
+ \n\tArguments:\n\t---------\n\t\"\"\""
69
+ - source_sentence: I'm organizing a movie marathon and I need a mix of genres. Can
70
+ you recommend highly rated movies from various genres available on streaming services
71
+ like Netflix, Prime Video, Hulu, and Peacock? Additionally, provide me with the
72
+ TV schedule for tonight's movies.
73
  sentences:
74
+ - "def streaming_availability_genres_free:\n\t\"\"\"\n\tDescription:\n\tGet the\
75
+ \ id to name mapping of supported genres.\n\n\tArguments:\n\t---------\n\t\"\"\
76
+ \""
77
+ - "def solcast_simple_pv_power_forecast:\n\t\"\"\"\n\tDescription:\n\tThe simple\
78
+ \ PV power request returns a first-guess PV power output forecast, based on your\
79
+ \ specified latitude and longitude plus some basic PV system characteristics.\n\
80
+ \n\tArguments:\n\t---------\n\t- capacity : NUMBER (required)\n\t Description:\
81
+ \ The capacity of the system, in Watts.\n\t Default: 0\n\t- latitude : NUMBER\
82
+ \ (required)\n\t Description: Latitude\n\t- longitude : NUMBER (required)\n\t\
83
+ \ Description: Longitude\n\t\"\"\""
84
+ - "def kargom_nerede_companies:\n\t\"\"\"\n\tDescription:\n\tCompanies\n\n\tArguments:\n\
 
 
85
  \t---------\n\t\"\"\""
86
+ - source_sentence: I'm a food blogger and I need some interesting facts for my next
87
+ article. Fetch a random fact about a specific number and provide a historical
88
+ fact about a famous year. Additionally, recommend a genre of music to set the
89
+ mood for writing.
90
  sentences:
91
+ - "def dicolink_get_lexical_field:\n\t\"\"\"\n\tDescription:\n\tGet Lexical Field\
92
+ \ for a word\n\n\tArguments:\n\t---------\n\t- mot : string (required)\n\t Default:\
93
+ \ cheval\n\t\"\"\""
94
+ - "def geodb_cities_places_near_location:\n\t\"\"\"\n\tDescription:\n\tGet places\
95
+ \ near the given location, filtering by optional criteria.\n\n\tArguments:\n\t\
96
+ ---------\n\t- radius : STRING (required)\n\t Description: The location radius\
97
+ \ within which to find places\n\t Default: 100\n\t- locationid : STRING (required)\n\
98
+ \t Description: Only cities near this location. Latitude/longitude in ISO-6709\
99
+ \ format: ±DD.DDDD±DDD.DDDD\n\t Default: 33.832213-118.387099\n\t\"\"\""
100
+ - "def deezer_genre:\n\t\"\"\"\n\tDescription:\n\tA genre object\n\n\tArguments:\n\
101
+ \t---------\n\t- id : STRING (required)\n\t Description: The editorial's Deezer\
102
+ \ id\n\t\"\"\""
103
  pipeline_tag: sentence-similarity
104
  library_name: sentence-transformers
105
  metrics:
 
132
  type: dev
133
  metrics:
134
  - type: cosine_accuracy@1
135
+ value: 0.66
136
  name: Cosine Accuracy@1
137
  - type: cosine_accuracy@3
138
+ value: 0.82
139
  name: Cosine Accuracy@3
140
  - type: cosine_accuracy@5
141
+ value: 0.88
142
  name: Cosine Accuracy@5
143
  - type: cosine_accuracy@10
144
+ value: 0.95
145
  name: Cosine Accuracy@10
146
  - type: cosine_precision@1
147
+ value: 0.66
148
  name: Cosine Precision@1
149
  - type: cosine_precision@3
150
+ value: 0.4833333333333333
151
  name: Cosine Precision@3
152
  - type: cosine_precision@5
153
+ value: 0.3600000000000001
154
  name: Cosine Precision@5
155
  - type: cosine_precision@10
156
+ value: 0.21800000000000005
157
  name: Cosine Precision@10
158
  - type: cosine_recall@1
159
+ value: 0.25066666666666665
160
  name: Cosine Recall@1
161
  - type: cosine_recall@3
162
+ value: 0.5509999999999999
163
  name: Cosine Recall@3
164
  - type: cosine_recall@5
165
+ value: 0.6613333333333332
166
  name: Cosine Recall@5
167
  - type: cosine_recall@10
168
+ value: 0.7801666666666667
169
  name: Cosine Recall@10
170
  - type: cosine_ndcg@1
171
+ value: 0.66
172
  name: Cosine Ndcg@1
173
  - type: cosine_ndcg@3
174
+ value: 0.582592770063282
175
  name: Cosine Ndcg@3
176
  - type: cosine_ndcg@5
177
+ value: 0.633788337516139
178
  name: Cosine Ndcg@5
179
  - type: cosine_ndcg@10
180
+ value: 0.6889055410848939
181
  name: Cosine Ndcg@10
182
  - type: cosine_mrr@10
183
+ value: 0.7467063492063493
184
  name: Cosine Mrr@10
185
  - type: cosine_map@100
186
+ value: 0.629168458376448
187
  name: Cosine Map@100
188
  ---
189
 
 
237
  model = SentenceTransformer("LorMolf/mnrl-toolbench-bge-base-en-v1.5")
238
  # Run inference
239
  sentences = [
240
+ "I'm a food blogger and I need some interesting facts for my next article. Fetch a random fact about a specific number and provide a historical fact about a famous year. Additionally, recommend a genre of music to set the mood for writing.",
241
+ 'def deezer_genre:\n\t"""\n\tDescription:\n\tA genre object\n\n\tArguments:\n\t---------\n\t- id : STRING (required)\n\t Description: The editorial\'s Deezer id\n\t"""',
242
+ 'def dicolink_get_lexical_field:\n\t"""\n\tDescription:\n\tGet Lexical Field for a word\n\n\tArguments:\n\t---------\n\t- mot : string (required)\n\t Default: cheval\n\t"""',
243
  ]
244
  embeddings = model.encode(sentences)
245
  print(embeddings.shape)
 
284
  * Dataset: `dev`
285
  * Evaluated with <code>src.port.retrieval_evaluator.DeviceAwareInformationRetrievalEvaluator</code>
286
 
287
+ | Metric | Value |
288
+ |:--------------------|:-----------|
289
+ | cosine_accuracy@1 | 0.66 |
290
+ | cosine_accuracy@3 | 0.82 |
291
+ | cosine_accuracy@5 | 0.88 |
292
+ | cosine_accuracy@10 | 0.95 |
293
+ | cosine_precision@1 | 0.66 |
294
+ | cosine_precision@3 | 0.4833 |
295
+ | cosine_precision@5 | 0.36 |
296
+ | cosine_precision@10 | 0.218 |
297
+ | cosine_recall@1 | 0.2507 |
298
+ | cosine_recall@3 | 0.551 |
299
+ | cosine_recall@5 | 0.6613 |
300
+ | cosine_recall@10 | 0.7802 |
301
+ | cosine_ndcg@1 | 0.66 |
302
+ | cosine_ndcg@3 | 0.5826 |
303
+ | cosine_ndcg@5 | 0.6338 |
304
+ | **cosine_ndcg@10** | **0.6889** |
305
+ | cosine_mrr@10 | 0.7467 |
306
+ | cosine_map@100 | 0.6292 |
307
 
308
  <!--
309
  ## Bias, Risks and Limitations
 
323
 
324
  #### Unnamed Dataset
325
 
326
+ * Size: 30,000 training samples
327
  * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>sentence_2</code>
328
  * Approximate statistics based on the first 1000 samples:
329
  | | sentence_0 | sentence_1 | sentence_2 |
330
  |:--------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
331
  | type | string | string | string |
332
+ | details | <ul><li>min: 29 tokens</li><li>mean: 61.36 tokens</li><li>max: 133 tokens</li></ul> | <ul><li>min: 28 tokens</li><li>mean: 82.89 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 26 tokens</li><li>mean: 85.81 tokens</li><li>max: 512 tokens</li></ul> |
333
  * Samples:
334
+ | sentence_0 | sentence_1 | sentence_2 |
335
+ |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
336
+ | <code>My family and I are planning a beach vacation in Florida next month. Can you provide us with the current weather conditions, active alerts, and station details for Miami and Orlando? Additionally, we would like a radiation forecast to plan our outdoor activities.</code> | <code>def solcast_simple_radiation_forecast:<br> """<br> Description:<br> The simple radiation request returns detailed solar radiation data for the next week based only on your latitude and longitude.<br><br> Arguments:<br> ---------<br> - latitude : NUMBER (required)<br> Description: Latitude<br> - longitude : NUMBER (required)<br> Description: Longitude<br> """</code> | <code>def uk_boundaries_io_retrieve_uk_postal_district_outline_boundaries:<br> """<br> Description:<br> example: Query by "TW12" district<br><br> Arguments:<br> ---------<br> - postal-district : STRING (required)<br> Description: Query by postal district code.<br> Default: TW12<br> """</code> |
337
+ | <code>I am planning a vacation to a tropical destination and I need some information to make the most of my trip. Can you please provide me with the current weather data for a location with latitude 25.5 and longitude -80.5? Additionally, I would like a 16-day forecast for this location. Furthermore, I am interested in knowing the available cities in the country associated with this location. Lastly, please suggest some popular tourist attractions in this country.</code> | <code>def weather_forecast_14_days_list_of_cities_in_one_country:<br> """<br> Description:<br> List of cities in one Country<br><br> Arguments:<br> ---------<br> """</code> | <code>def Billboard-API.Brazil_Songs:<br> """<br> Description:<br> Provide the Brazil Songs chart information<br><br> Arguments:<br> ---------<br> - date : DATE (YYYY-MM-DD) (required)<br> Description: date format(YYYY-MM-DD)<br> Default: 2022-05-07<br> - range : STRING (required)<br> Default: 1-10<br> """</code> |
338
+ | <code>I want to surprise my family with a special dinner tonight. Can you suggest some quick and easy recipes for a main course? Also, provide me with the list of ingredients required for each recipe. Additionally, I would like to know the plant hardiness zone for our area, which is zip code 90210.</code> | <code>def yummly_feeds_list:<br> """<br> Description:<br> List feeds by category<br><br> Arguments:<br> ---------<br> - start : NUMBER (required)<br> Description: The offset of items to be ignored in response for paging<br> Default: 0<br> - limit : NUMBER (required)<br> Description: Number of items returned per response<br> Default: 24<br> """</code> | <code>def line_messaging_get_number_of_sent_reply_messages:<br> """<br> Description:<br> Gets the number of messages sent with the /bot/message/reply endpoint.<br><br> Arguments:<br> ---------<br> - date : STRING (required)<br> Description: Date the messages were sent. Format: yyyyMMdd (Example: 20191231) Timezone: UTC+9<br> """</code> |
339
  * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
340
  ```json
341
  {
 
348
  #### Non-Default Hyperparameters
349
 
350
  - `eval_strategy`: steps
351
+ - `per_device_train_batch_size`: 2
352
+ - `per_device_eval_batch_size`: 2
353
+ - `num_train_epochs`: 1
354
  - `fp16`: True
355
  - `multi_dataset_batch_sampler`: round_robin
356
 
 
361
  - `do_predict`: False
362
  - `eval_strategy`: steps
363
  - `prediction_loss_only`: True
364
+ - `per_device_train_batch_size`: 2
365
+ - `per_device_eval_batch_size`: 2
366
  - `per_gpu_train_batch_size`: None
367
  - `per_gpu_eval_batch_size`: None
368
  - `gradient_accumulation_steps`: 1
 
374
  - `adam_beta2`: 0.999
375
  - `adam_epsilon`: 1e-08
376
  - `max_grad_norm`: 1.0
377
+ - `num_train_epochs`: 1
378
  - `max_steps`: -1
379
  - `lr_scheduler_type`: linear
380
  - `lr_scheduler_kwargs`: {}
 
475
  </details>
476
 
477
  ### Training Logs
478
+ | Epoch | Step | Training Loss | dev_cosine_ndcg@10 |
479
+ |:------:|:-----:|:-------------:|:------------------:|
480
+ | -1 | -1 | - | 0.6031 |
481
+ | 0.0333 | 500 | 0.3188 | - |
482
+ | 0.0667 | 1000 | 0.2079 | - |
483
+ | 0.1 | 1500 | 0.2178 | - |
484
+ | 0.1333 | 2000 | 0.186 | - |
485
+ | 0.1667 | 2500 | 0.1665 | - |
486
+ | 0.2 | 3000 | 0.205 | 0.6953 |
487
+ | 0.2333 | 3500 | 0.149 | - |
488
+ | 0.2667 | 4000 | 0.1691 | - |
489
+ | 0.3 | 4500 | 0.1703 | - |
490
+ | 0.3333 | 5000 | 0.1588 | - |
491
+ | 0.3667 | 5500 | 0.1348 | - |
492
+ | 0.4 | 6000 | 0.1625 | 0.6639 |
493
+ | 0.4333 | 6500 | 0.1415 | - |
494
+ | 0.4667 | 7000 | 0.13 | - |
495
+ | 0.5 | 7500 | 0.1271 | - |
496
+ | 0.5333 | 8000 | 0.1058 | - |
497
+ | 0.5667 | 8500 | 0.1031 | - |
498
+ | 0.6 | 9000 | 0.1026 | 0.6860 |
499
+ | 0.6333 | 9500 | 0.1031 | - |
500
+ | 0.6667 | 10000 | 0.1248 | - |
501
+ | 0.7 | 10500 | 0.0909 | - |
502
+ | 0.7333 | 11000 | 0.1055 | - |
503
+ | 0.7667 | 11500 | 0.101 | - |
504
+ | 0.8 | 12000 | 0.0598 | 0.6778 |
505
+ | 0.8333 | 12500 | 0.0949 | - |
506
+ | 0.8667 | 13000 | 0.062 | - |
507
+ | 0.9 | 13500 | 0.1129 | - |
508
+ | 0.9333 | 14000 | 0.1106 | - |
509
+ | 0.9667 | 14500 | 0.0653 | - |
510
+ | 1.0 | 15000 | 0.0669 | 0.6889 |
511
 
512
 
513
  ### Framework Versions
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:c771f72cf77fff1301d3f3937a9b2ef31ce32c37c2bc5dca13b3409f50aa4dbd
3
  size 437951328
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0954f24844b3b1cbe528871e2f850444bb5055667fb0ecf42b44a639a482209c
3
  size 437951328