metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:25310
- loss:CosineSimilarityLoss
base_model: Snowflake/snowflake-arctic-embed-s
widget:
- source_sentence: encryption algorithms for mobile transactions
sentences:
- equipaggiamento per sport acquatici
- finanziamenti a lungo termine per privati
- encryption algorithms for mobile banking
- source_sentence: tecnologie di liofilizzazione per frutta e verdura
sentences:
- serbatoi di fermentazione in acciaio inox per cantine
- impianti di liofilizzazione per frutta e verdura
- medical cannulas
- source_sentence: servizi di installazione di cavi sottomarini
sentences:
- servizi di installazione di cavi sottomarini
- custom spinal fusion implants
- soluzioni disinfettanti per il settore sanitario
- source_sentence: antifouling paint for yachts
sentences:
- sistemi di ventilazione con controllo umidità integrato
- robot per la movimentazione interna
- vernici per automobili
- source_sentence: materiali isolanti per sistemi radianti a soffitto
sentences:
- Produzione di contenuti per social media nel settore moda.
- privacy and data protection training
- materiali isolanti per edifici
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- cosine_accuracy
model-index:
- name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-s
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: custom dataset
type: custom_dataset
metrics:
- type: pearson_cosine
value: 0.7037099269944034
name: Pearson Cosine
- type: spearman_cosine
value: 0.7286991662955787
name: Spearman Cosine
- task:
type: triplet
name: Triplet
dataset:
name: all nli dataset
type: all_nli_dataset
metrics:
- type: cosine_accuracy
value: 0.8162614107131958
name: Cosine Accuracy
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: stsbenchmark
type: stsbenchmark
metrics:
- type: pearson_cosine
value: 0.7477235986007352
name: Pearson Cosine
- type: spearman_cosine
value: 0.7431995961099886
name: Spearman Cosine
SentenceTransformer based on Snowflake/snowflake-arctic-embed-s
This is a sentence-transformers model finetuned from Snowflake/snowflake-arctic-embed-s. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Snowflake/snowflake-arctic-embed-s
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("LucaZilli/model-snowflake-s_20250226_145351_finalmodel")
# Run inference
sentences = [
'materiali isolanti per sistemi radianti a soffitto',
'materiali isolanti per edifici',
'privacy and data protection training',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Datasets:
custom_dataset
andstsbenchmark
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | custom_dataset | stsbenchmark |
---|---|---|
pearson_cosine | 0.7037 | 0.7477 |
spearman_cosine | 0.7287 | 0.7432 |
Triplet
- Dataset:
all_nli_dataset
- Evaluated with
TripletEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.8163 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 25,310 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 4 tokens
- mean: 13.32 tokens
- max: 31 tokens
- min: 4 tokens
- mean: 11.06 tokens
- max: 31 tokens
- min: 0.0
- mean: 0.49
- max: 1.0
- Samples:
sentence1 sentence2 score ottimizzazione dei tempi di produzione per capi sartoriali di lusso
strumenti per l'ottimizzazione dei tempi di produzione
0.6
software di programmazione robotica per lucidatura
software gestionale generico
0.4
rete di sensori per l'analisi del suolo in tempo reale
software per gestione aziendale
0.0
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Evaluation Dataset
Unnamed Dataset
- Size: 3,164 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 5 tokens
- mean: 13.61 tokens
- max: 31 tokens
- min: 4 tokens
- mean: 11.39 tokens
- max: 27 tokens
- min: 0.0
- mean: 0.49
- max: 1.0
- Samples:
sentence1 sentence2 score ispezioni regolari per camion aziendali
ispezioni regolari per camion di consegna
1.0
blister packaging machines GMP compliant
food packaging machines
0.4
EMI shielding paints for electronics
Vernici per schermatura elettromagnetica dispositivi elettronici
0.8
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 5warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | custom_dataset_spearman_cosine | all_nli_dataset_cosine_accuracy | stsbenchmark_spearman_cosine |
---|---|---|---|---|---|---|
-1 | -1 | - | - | 0.7287 | 0.8163 | 0.7432 |
0.1264 | 200 | 0.0671 | 0.0434 | - | - | - |
0.2528 | 400 | 0.0401 | 0.0344 | - | - | - |
0.3793 | 600 | 0.0342 | 0.0307 | - | - | - |
0.5057 | 800 | 0.0347 | 0.0327 | - | - | - |
0.6321 | 1000 | 0.0322 | 0.0287 | - | - | - |
0.7585 | 1200 | 0.032 | 0.0279 | - | - | - |
0.8850 | 1400 | 0.0307 | 0.0282 | - | - | - |
1.0114 | 1600 | 0.0267 | 0.0279 | - | - | - |
1.1378 | 1800 | 0.0244 | 0.0266 | - | - | - |
1.2642 | 2000 | 0.0227 | 0.0282 | - | - | - |
1.3906 | 2200 | 0.0237 | 0.0249 | - | - | - |
1.5171 | 2400 | 0.0222 | 0.0273 | - | - | - |
1.6435 | 2600 | 0.0235 | 0.0246 | - | - | - |
1.7699 | 2800 | 0.0228 | 0.0247 | - | - | - |
1.8963 | 3000 | 0.0225 | 0.0241 | - | - | - |
2.0228 | 3200 | 0.0213 | 0.0244 | - | - | - |
2.1492 | 3400 | 0.0169 | 0.0234 | - | - | - |
2.2756 | 3600 | 0.0178 | 0.0257 | - | - | - |
2.4020 | 3800 | 0.018 | 0.0236 | - | - | - |
2.5284 | 4000 | 0.0177 | 0.0230 | - | - | - |
2.6549 | 4200 | 0.0176 | 0.0234 | - | - | - |
2.7813 | 4400 | 0.0182 | 0.0229 | - | - | - |
2.9077 | 4600 | 0.0173 | 0.0221 | - | - | - |
3.0341 | 4800 | 0.0157 | 0.0232 | - | - | - |
3.1606 | 5000 | 0.0139 | 0.0225 | - | - | - |
3.2870 | 5200 | 0.0137 | 0.0222 | - | - | - |
3.4134 | 5400 | 0.0142 | 0.0224 | - | - | - |
3.5398 | 5600 | 0.0143 | 0.0224 | - | - | - |
3.6662 | 5800 | 0.0135 | 0.0225 | - | - | - |
3.7927 | 6000 | 0.0143 | 0.0223 | - | - | - |
3.9191 | 6200 | 0.0143 | 0.0234 | - | - | - |
4.0455 | 6400 | 0.0128 | 0.0219 | - | - | - |
4.1719 | 6600 | 0.0117 | 0.0222 | - | - | - |
4.2984 | 6800 | 0.0113 | 0.0217 | - | - | - |
4.4248 | 7000 | 0.0115 | 0.0220 | - | - | - |
4.5512 | 7200 | 0.012 | 0.0217 | - | - | - |
4.6776 | 7400 | 0.0113 | 0.0221 | - | - | - |
4.8040 | 7600 | 0.012 | 0.0217 | - | - | - |
4.9305 | 7800 | 0.0105 | 0.0217 | - | - | - |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.48.3
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}