e5_EC_MultiLabel_12082025

This model is a fine-tuned version of intfloat/multilingual-e5-large-instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1220
  • F1 Weighted: 0.9559

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss F1 Weighted
0.9125 1.0 324 0.5410 0.7120
0.4462 2.0 648 0.2934 0.8546
0.2895 3.0 972 0.2372 0.8833
0.2172 4.0 1296 0.1978 0.9065
0.171 5.0 1620 0.1744 0.9182
0.1389 6.0 1944 0.1505 0.9325
0.116 7.0 2268 0.1402 0.9418
0.0985 8.0 2592 0.1410 0.9412
0.0849 9.0 2916 0.1341 0.9480
0.0707 10.0 3240 0.1276 0.9529
0.063 11.0 3564 0.1239 0.9531
0.0567 12.0 3888 0.1220 0.9559

Framework versions

  • Transformers 4.55.0
  • Pytorch 2.6.0+cu124
  • Datasets 4.0.0
  • Tokenizers 0.21.4
Downloads last month
3
Safetensors
Model size
560M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Ludo33/e5_EC_MultiLabel_12082025

Finetuned
(160)
this model