e5_Mobilite_MultiLabel_08092025
This model is a fine-tuned version of intfloat/multilingual-e5-large-instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1036
- F1 Weighted: 0.9654
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | F1 Weighted |
---|---|---|---|---|
0.9387 | 1.0 | 215 | 0.5420 | 0.7745 |
0.462 | 2.0 | 430 | 0.2956 | 0.8519 |
0.2859 | 3.0 | 645 | 0.2135 | 0.8941 |
0.208 | 4.0 | 860 | 0.1591 | 0.9349 |
0.1652 | 5.0 | 1075 | 0.1513 | 0.9327 |
0.1366 | 6.0 | 1290 | 0.1273 | 0.9509 |
0.1177 | 7.0 | 1505 | 0.1197 | 0.9535 |
0.1047 | 8.0 | 1720 | 0.1088 | 0.9616 |
0.0977 | 9.0 | 1935 | 0.1076 | 0.9616 |
0.0918 | 10.0 | 2150 | 0.1036 | 0.9654 |
Framework versions
- Transformers 4.56.0
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.22.0
- Downloads last month
- 796
Model tree for Ludo33/e5_Mobilite_MultiLabel_08092025
Base model
intfloat/multilingual-e5-large-instruct