task2_small
This model is a fine-tuned version of distilbert/distilbert-base-german-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0507
- Precision: 0.8401
- Recall: 0.8712
- F1: 0.8554
- Accuracy: 0.9894
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.0329 | 1.0 | 2359 | 0.0386 | 0.8098 | 0.8163 | 0.8130 | 0.9870 |
0.0245 | 2.0 | 4718 | 0.0356 | 0.8210 | 0.8551 | 0.8377 | 0.9888 |
0.0158 | 3.0 | 7077 | 0.0401 | 0.8426 | 0.8551 | 0.8488 | 0.9887 |
0.0118 | 4.0 | 9436 | 0.0417 | 0.8144 | 0.8664 | 0.8396 | 0.9885 |
0.0093 | 5.0 | 11795 | 0.0434 | 0.8470 | 0.8522 | 0.8496 | 0.9889 |
0.0063 | 6.0 | 14154 | 0.0472 | 0.8548 | 0.8580 | 0.8564 | 0.9891 |
0.0054 | 7.0 | 16513 | 0.0484 | 0.8450 | 0.8680 | 0.8564 | 0.9893 |
0.0049 | 8.0 | 18872 | 0.0492 | 0.8398 | 0.8693 | 0.8543 | 0.9894 |
0.0033 | 9.0 | 21231 | 0.0502 | 0.8397 | 0.8709 | 0.8550 | 0.9894 |
0.003 | 10.0 | 23590 | 0.0507 | 0.8401 | 0.8712 | 0.8554 | 0.9894 |
Framework versions
- Transformers 4.52.4
- Pytorch 2.6.0+cu124
- Datasets 2.14.4
- Tokenizers 0.21.2
- Downloads last month
- 1
Model tree for Luggi/task2_small
Base model
distilbert/distilbert-base-german-cased