File size: 8,430 Bytes
7d54ecf
a5af3c2
 
7d54ecf
 
a5af3c2
7d54ecf
 
 
 
 
 
 
 
 
 
 
 
a5af3c2
 
 
 
7d54ecf
a5af3c2
7d54ecf
d874b94
a5af3c2
 
afa5f94
36395a3
c285ad3
36395a3
 
 
9c94812
36395a3
 
 
9c94812
36395a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c94812
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36395a3
9c94812
 
 
 
 
 
a5af3c2
7d54ecf
 
 
 
976c215
 
a5af3c2
7d54ecf
a5af3c2
7d54ecf
 
a5af3c2
7d54ecf
a5af3c2
7d54ecf
 
 
 
a5af3c2
 
7d54ecf
a5af3c2
 
7d54ecf
 
 
 
 
 
 
 
 
 
 
 
 
a5af3c2
 
7d54ecf
afa5f94
 
 
 
 
 
 
 
 
 
36395a3
afa5f94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
144d876
c285ad3
 
 
 
 
 
 
 
 
 
 
 
4bf72b9
a5af3c2
7d54ecf
a5af3c2
7d54ecf
fc65dac
4bf72b9
7d54ecf
4bf72b9
7d54ecf
39559f2
7d54ecf
4bf72b9
7d54ecf
 
 
 
 
 
fc65dac
7d54ecf
 
 
 
 
 
 
fc65dac
7d54ecf
 
 
 
a5af3c2
7d54ecf
 
36395a3
a5af3c2
 
7d54ecf
a5af3c2
7d54ecf
 
 
a5af3c2
7d54ecf
 
a5af3c2
7d54ecf
 
 
a5af3c2
 
 
7d54ecf
a5af3c2
7d54ecf
 
 
 
 
a5af3c2
7d54ecf
 
 
a5af3c2
 
 
 
 
 
 
fc65dac
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
#!/usr/bin/env python3
"""
Fine-tune “SmolLM2-360M-Instruct” on the TaiwanChat dataset using Unsloth’s 4-bit quantization
+ LoRA adapters, with evaluation on a 5% hold-out every 500 steps, early stopping,
  explicit LR and optimizer, and push the merged model to Hugging Face.

Adjustments:
- LoRA rank remains r=16 (sufficient capacity for instruction data)
- No LoRA dropout (maximize capacity to avoid underfitting)
- Weight decay of 0.01 for slight regularization
- 5% validation split for robust hold-out
- Explicit learning_rate=2e-4 and warmup_steps=500
- logging_steps=50 for clearer loss trends
- optim="adamw_torch" for full-precision AdamW
- gradient_accumulation_steps=2 for more frequent updates
- num_train_epochs=5 to ensure sufficient training steps
- gradient_checkpointing disabled for stable gradient computation
- EarlyStoppingCallback to halt if no improvement over 4 evals
"""

from unsloth import FastLanguageModel
from trl import SFTTrainer, SFTConfig
from transformers import DataCollatorForLanguageModeling, EarlyStoppingCallback
from unsloth.chat_templates import train_on_responses_only
from transformers.integrations import WandbCallback
from datasets import load_dataset, Dataset
import os
import torch
import random
import logging
import re

logging.basicConfig(level=logging.WARNING)
logger = logging.getLogger(__name__)
logger = logging.getLogger(__name__)

class LoggingSFTTrainer(SFTTrainer):
    def compute_loss(self, model, inputs, return_outputs=False, **kwargs):
        # 0) your existing “no valid labels” check
        labels = inputs.get("labels", None)
        if labels is not None:
            num_valid = (labels != -100).sum().item()
            if not model.training and num_valid == 0:
                input_ids = inputs.get("input_ids", None)
                if input_ids is not None:
                    texts = self.tokenizer.batch_decode(
                        input_ids, skip_special_tokens=False
                    )
                    for idx, txt in enumerate(texts):
                        logger.warning(
                            f"→ [Step {self.state.global_step}] Example {idx} has no valid labels:\n{txt!r}"
                        )
                else:
                    logger.warning(
                        f"→ [Step {self.state.global_step}] Zero‐label batch but no input_ids to decode!"
                    )

        # 1) always get both loss and outputs so we can inspect the loss
        loss_and_outputs = super().compute_loss(
            model, inputs, return_outputs=True, **kwargs
        )
        # unpack depending on whether there are outputs
        if isinstance(loss_and_outputs, tuple):
            loss, outputs = loss_and_outputs
        else:
            loss, outputs = loss_and_outputs, None

        # 2) during evaluation, catch infinite or NaN losses
        if not model.training:
            if torch.isnan(loss) or torch.isinf(loss):
                input_ids = inputs.get("input_ids", None)
                if input_ids is not None:
                    texts = self.tokenizer.batch_decode(
                        input_ids, skip_special_tokens=False
                    )
                    for idx, txt in enumerate(texts):
                        logger.warning(
                            f"→ [Step {self.state.global_step}] Example {idx} resulted in invalid loss ({loss.item()}):\n{txt!r}"
                        )
                else:
                    logger.warning(
                        f"→ [Step {self.state.global_step}] Invalid loss ({loss.item()}) but no input_ids to decode!"
                    )

        # 3) return in the format the caller expects
        if return_outputs:
            return loss, outputs
        return loss


# Project and dataset settings
PROJECT_NAME = 'SmolLM2-360M-Instruct-TaiwanChat'
BASE_MODEL_ID = "unsloth/SmolLM2-360M-Instruct"
DATASET_ID = "yentinglin/TaiwanChat"
N_SAMPLES = 600000
MAX_LEN = 512

# CUDA and W&B setup
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True,max_split_size_mb:128"
os.environ["WANDB_PROJECT"] = f"{PROJECT_NAME}_CLOUD"
os.environ["WANDB_LOG_MODEL"] = "end"

# 1) Load 4-bit quantized model without full fine-tuning
model, tokenizer = FastLanguageModel.from_pretrained(
    model_name=BASE_MODEL_ID,
    max_seq_length=MAX_LEN,
    load_in_4bit=True,
    full_finetuning=False,
)

# 2) Attach LoRA adapters
model = FastLanguageModel.get_peft_model(
    model,
    r=16,                         # sufficient capacity for instruction tasks
    target_modules=[
        "q_proj", "k_proj", "v_proj", "o_proj",
        "gate_proj", "up_proj", "down_proj",
    ],
    lora_alpha=16,
    lora_dropout=0.0,            # no dropout to maximize capacity
    bias="none",
    use_gradient_checkpointing="unsloth",
    random_state=3407,
    max_seq_length=MAX_LEN,
    use_rslora=False,
    loftq_config=None,
)

# Prepare dataset with 5% validation split
def load_fitting_samples(dataset_id, tokenizer, max_len, n_samples, seed=3407):
    # 1) Open the HF dataset in streaming mode
    stream = load_dataset(dataset_id, split="train", streaming=True)

    selected = []
    for example in stream:
        # 2) Render the chat‐template text
        text = tokenizer.apply_chat_template(
            example["messages"],
            tokenize=False,
            add_generation_prompt=False,
        )
        # 3) Quick length check on token IDs
        tokens = tokenizer(text, add_special_tokens=False)["input_ids"]
        if len(tokens) <= max_len:
            selected.append({"text": text})

            # 4) Stop as soon as we have enough
            if len(selected) >= n_samples:
                break

    # 5) Shuffle and build a regular Dataset
    random.Random(seed).shuffle(selected)
    return Dataset.from_list(selected)

# --- usage in your script ---
dataset = load_fitting_samples(
    DATASET_ID,
    tokenizer=tokenizer,
    max_len=MAX_LEN,
    n_samples=N_SAMPLES,
    seed=3407,
)

def clean_assistant_marker(example):
    # collapse any "<|im_start|>assistant\n\n…\n\n" into "<|im_start|>assistant\n"
    example["text"] = re.sub(
        r"(<\|im_start\|>assistant)\n+",
        r"\1\n",
        example["text"]
    )
    return example

# clean: <|im_start|>assistant\n\n -> <|im_start|>assistant\n
dataset = dataset.map(clean_assistant_marker, batched=False)

new_dataset = dataset.train_test_split(test_size=0.1)

# Configure training arguments
training_args = SFTConfig(
    fp16_full_eval=False,
    per_device_train_batch_size=40,
    gradient_accumulation_steps=1,
    per_device_eval_batch_size=1,
    eval_accumulation_steps=1,
    evaluation_strategy="steps",
    eval_steps=100,
    save_strategy="steps",
    save_steps=1000,
    load_best_model_at_end=True,
    metric_for_best_model="eval_loss",
    greater_is_better=False,
    dataset_text_field="text",
    output_dir=PROJECT_NAME,
    max_seq_length=MAX_LEN,
    num_train_epochs=3,
    learning_rate=2e-4,
    weight_decay=0.01,
    warmup_steps=500,
    logging_steps=50,
    logging_dir=f"{PROJECT_NAME}/logs",
    report_to=["wandb"],
    run_name=f"{PROJECT_NAME}_CLOUD",
    optim="adamw_8bit",
    push_to_hub=False,
    gradient_checkpointing=False,
    seed=3407,
)

# Initialize Trainer with early stopping
torch.cuda.empty_cache()
trainer = LoggingSFTTrainer(
    model=model,
    args=training_args,
    data_collator=DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False),
    tokenizer=tokenizer,
    callbacks=[WandbCallback, EarlyStoppingCallback(early_stopping_patience=4)],
    train_dataset=new_dataset["train"],
    eval_dataset=new_dataset["test"],
)

# Mask user prompts and train
trainer = train_on_responses_only(
    trainer,
    instruction_part="<|im_start|>user\n",
    response_part="<|im_start|>assistant\n",
)
trainer.train()

# Merge LoRA weights and push merged model to Hugging Face
model.push_to_hub_merged(
    f'Luigi/{PROJECT_NAME}',
    tokenizer,
    save_method="merged_16bit",
    safe_serialization=None
)

# Example inference
test_prompt = "請問台北今天的天氣如何?"
inputs = tokenizer(test_prompt, return_tensors="pt").to(model.device)
outputs = model.generate(
    **inputs,
    max_new_tokens=100,
    do_sample=True,
    temperature=0.8,
    pad_token_id=tokenizer.eos_token_id
)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))