LLaVAction-0.5B

LLaVAction: evaluating and training multi-modal large language models for action recognition

Shaokai Ye1**  Haozhe Qi1** 

Alexander Mathis1†  Mackenzie Weygandt Mathis1†‡ 

1 EPFL

** First authors † Senior Authors ‡ Corresponding Author

[arXiv Paper]   [Project Page]   [Github Repo]  

Model Summary

The LLaVAction-0.5B model is trained on EPIC-KITCHENS-100-MQA, based on Qwen2 language model with a context window of 32K tokens.

Useage

Intended use

The model was trained on EPIC-KITCHENS-100-MQA. It's intended to be used on videos that are similar to EPIC-KITCHENS-100.

Generation

We provide the simple generation process for using our model. For more details, you could refer to our Github.

!pip install llavaction

from llavaction.model.builder import load_pretrained_model
from llavaction.mm_utils import get_model_name_from_path, process_images, tokenizer_image_token
from llavaction.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, IGNORE_INDEX
from llavaction.conversation import conv_templates, SeparatorStyle
from PIL import Image
import requests
import copy
import torch
import sys
import warnings
from decord import VideoReader, cpu
import numpy as np
warnings.filterwarnings("ignore")

#Your video (it assumes an egocentric view point)
video_path = "XXXX"

#These are the prompts we trained with, but you can test others:
perspective_prompt = "You are seeing this video from egocentric view and you are the person. Your hands are sometimes interacting with objects. What action are you doing?"
task_prompt = "Describe in details what you see from the video frames."


def load_video(video_path, max_frames_num,fps=1,force_sample=False):
    if max_frames_num == 0:
        return np.zeros((1, 336, 336, 3))
    vr = VideoReader(video_path, ctx=cpu(0),num_threads=1)
    total_frame_num = len(vr)
    video_time = total_frame_num / vr.get_avg_fps()
    fps = round(vr.get_avg_fps()/fps)
    frame_idx = [i for i in range(0, len(vr), fps)]
    if len(frame_idx) > max_frames_num or force_sample:
        sample_fps = max_frames_num
        uniform_sampled_frames = np.linspace(0, total_frame_num - 1, sample_fps, dtype=int)
        frame_idx = uniform_sampled_frames.tolist()
        frame_time = [i/vr.get_avg_fps() for i in frame_idx]
    spare_frames = vr.get_batch(frame_idx).asnumpy()
    # import pdb;pdb.set_trace()
    return spare_frames,frame_time,video_time

pretrained = "MLAdaptiveIntelligence/LLaVAction-0.5B"
model_name = "llava_qwen"
device = "cuda"
device_map = "auto"
tokenizer, model, image_processor, max_length = load_pretrained_model(pretrained, None, model_name, torch_dtype="bfloat16", device_map=device_map)  # Add any other thing you want to pass in llava_model_args
model.eval()
max_frames_num = 64
video,frame_time,video_time = load_video(video_path, max_frames_num, 1, force_sample=True)
video = image_processor.preprocess(video, return_tensors="pt")["pixel_values"].cuda().to(torch.bfloat16)
video = [video]
conv_template = "qwen_1_5"  # Make sure you use correct chat template for different models
time_instruction = f"The video lasts for {video_time:.2f} seconds, and {len(video[0])} frames are uniformly sampled from it. "
question = DEFAULT_IMAGE_TOKEN + f"\n{time_instruction}\n{perspective_prompt} {task_prompt}"
conv = copy.deepcopy(conv_templates[conv_template])
conv.append_message(conv.roles[0], question)
conv.append_message(conv.roles[1], None)
prompt_question = conv.get_prompt()
input_ids = tokenizer_image_token(prompt_question, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(device)
cont = model.generate(
    input_ids,
    images=video,
    modalities= ["video"],
    do_sample=False,
    temperature=0,
    max_new_tokens=4096,
)
text_outputs = tokenizer.batch_decode(cont, skip_special_tokens=True)[0].strip()
print(text_outputs)

Training

See details in Ye et al. 2025: arxiv.org/abs/2503.18712

Model

  • Architecture: SO400M + Qwen2
  • Initialized Model: lmms-lab/llava-onevision-qwen2-0.5b-ov
  • Data: EPIC-KITCHENS-100-MQA, 2 epochs, full model
  • Precision: bfloat16

Hardware & Software

GPUs: 32 * Nvidia GH-200 (for whole model series training) Orchestration: HuggingFace Trainer Neural networks: PyTorch

Citation

arXiv: arxiv.org/abs/2503.18712

@article{YeQi2025llavaction,
  title={LLaVAction: evaluating and training multi-modal large language models for action recognition},
  author={Ye, Shaokai and Qi, Haozhe and Mathis, Alexander and Mathis, Mackenzie W.},
  journal={arXiv preprint},
  year={2025}
}
Downloads last month
22
Safetensors
Model size
897M params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for MLAdaptiveIntelligence/LLaVAction-0.5B

Finetuned
(7)
this model