LLaVAction-0.5B
LLaVAction: evaluating and training multi-modal large language models for action recognition
Shaokai Ye1** Haozhe Qi1**
Alexander Mathis1†Mackenzie Weygandt Mathis1†‡
1 EPFL
** First authors †Senior Authors ‡ Corresponding Author
Model Summary
The LLaVAction-0.5B model is trained on EPIC-KITCHENS-100-MQA, based on Qwen2 language model with a context window of 32K tokens.
- Project Page: https://mmathislab.github.io/llavaction/
- Paper: For more details, please check our paper
- Repository: https://github.com/AdaptiveMotorControlLab/LLaVAction
- Point of Contact: Mackenzie Mathis
- Languages: English
Useage
Intended use
The model was trained on EPIC-KITCHENS-100-MQA. It's intended to be used on videos that are similar to EPIC-KITCHENS-100.
Generation
We provide the simple generation process for using our model. For more details, you could refer to our Github.
!pip install llavaction
from llavaction.model.builder import load_pretrained_model
from llavaction.mm_utils import get_model_name_from_path, process_images, tokenizer_image_token
from llavaction.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, IGNORE_INDEX
from llavaction.conversation import conv_templates, SeparatorStyle
from PIL import Image
import requests
import copy
import torch
import sys
import warnings
from decord import VideoReader, cpu
import numpy as np
warnings.filterwarnings("ignore")
#Your video (it assumes an egocentric view point)
video_path = "XXXX"
#These are the prompts we trained with, but you can test others:
perspective_prompt = "You are seeing this video from egocentric view and you are the person. Your hands are sometimes interacting with objects. What action are you doing?"
task_prompt = "Describe in details what you see from the video frames."
def load_video(video_path, max_frames_num,fps=1,force_sample=False):
if max_frames_num == 0:
return np.zeros((1, 336, 336, 3))
vr = VideoReader(video_path, ctx=cpu(0),num_threads=1)
total_frame_num = len(vr)
video_time = total_frame_num / vr.get_avg_fps()
fps = round(vr.get_avg_fps()/fps)
frame_idx = [i for i in range(0, len(vr), fps)]
if len(frame_idx) > max_frames_num or force_sample:
sample_fps = max_frames_num
uniform_sampled_frames = np.linspace(0, total_frame_num - 1, sample_fps, dtype=int)
frame_idx = uniform_sampled_frames.tolist()
frame_time = [i/vr.get_avg_fps() for i in frame_idx]
spare_frames = vr.get_batch(frame_idx).asnumpy()
# import pdb;pdb.set_trace()
return spare_frames,frame_time,video_time
pretrained = "MLAdaptiveIntelligence/LLaVAction-0.5B"
model_name = "llava_qwen"
device = "cuda"
device_map = "auto"
tokenizer, model, image_processor, max_length = load_pretrained_model(pretrained, None, model_name, torch_dtype="bfloat16", device_map=device_map) # Add any other thing you want to pass in llava_model_args
model.eval()
max_frames_num = 64
video,frame_time,video_time = load_video(video_path, max_frames_num, 1, force_sample=True)
video = image_processor.preprocess(video, return_tensors="pt")["pixel_values"].cuda().to(torch.bfloat16)
video = [video]
conv_template = "qwen_1_5" # Make sure you use correct chat template for different models
time_instruction = f"The video lasts for {video_time:.2f} seconds, and {len(video[0])} frames are uniformly sampled from it. "
question = DEFAULT_IMAGE_TOKEN + f"\n{time_instruction}\n{perspective_prompt} {task_prompt}"
conv = copy.deepcopy(conv_templates[conv_template])
conv.append_message(conv.roles[0], question)
conv.append_message(conv.roles[1], None)
prompt_question = conv.get_prompt()
input_ids = tokenizer_image_token(prompt_question, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(device)
cont = model.generate(
input_ids,
images=video,
modalities= ["video"],
do_sample=False,
temperature=0,
max_new_tokens=4096,
)
text_outputs = tokenizer.batch_decode(cont, skip_special_tokens=True)[0].strip()
print(text_outputs)
Training
See details in Ye et al. 2025: arxiv.org/abs/2503.18712
Model
- Architecture: SO400M + Qwen2
- Initialized Model: lmms-lab/llava-onevision-qwen2-0.5b-ov
- Data: EPIC-KITCHENS-100-MQA, 2 epochs, full model
- Precision: bfloat16
Hardware & Software
GPUs: 32 * Nvidia GH-200 (for whole model series training) Orchestration: HuggingFace Trainer Neural networks: PyTorch
Citation
arXiv: arxiv.org/abs/2503.18712
@article{YeQi2025llavaction,
title={LLaVAction: evaluating and training multi-modal large language models for action recognition},
author={Ye, Shaokai and Qi, Haozhe and Mathis, Alexander and Mathis, Mackenzie W.},
journal={arXiv preprint},
year={2025}
}
- Downloads last month
- 22
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
HF Inference deployability: The HF Inference API does not support video-text-to-text models for transformers
library.
Model tree for MLAdaptiveIntelligence/LLaVAction-0.5B
Base model
lmms-lab/llava-onevision-qwen2-0.5b-ov