Upload modeling files
Browse files- configuration_sl_model.py +177 -0
configuration_sl_model.py
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers.utils import logging
|
2 |
+
from transformers.models.llama import LlamaConfig
|
3 |
+
|
4 |
+
|
5 |
+
logger = logging.get_logger(__name__)
|
6 |
+
|
7 |
+
|
8 |
+
class SLModelConfig(LlamaConfig):
|
9 |
+
r"""
|
10 |
+
This is the configuration class to store the configuration of a [`SLModelModel`]. It is used to instantiate an SLModel
|
11 |
+
model according to the specified arguments, defining the model architecture.
|
12 |
+
|
13 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
14 |
+
documentation from [`PretrainedConfig`] for more information.
|
15 |
+
|
16 |
+
|
17 |
+
Args:
|
18 |
+
vocab_size (`int`, *optional*, defaults to 128256):
|
19 |
+
Vocabulary size of the SLModel model. Defines the number of different tokens that can be represented by the
|
20 |
+
`inputs_ids` passed when calling [`SLModel`]
|
21 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
22 |
+
Dimensionality of the encoder layers and the pooler layer.
|
23 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
24 |
+
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
|
25 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
26 |
+
Number of hidden layers in the Transformer encoder.
|
27 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
28 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
29 |
+
num_key_value_heads (`int`, *optional*):
|
30 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
31 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
32 |
+
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
33 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
34 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
35 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
36 |
+
`num_attention_heads`.
|
37 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
38 |
+
The non-linear activation function (function or string) in the encoder and pooler.
|
39 |
+
max_position_embeddings (`int`, *optional*, defaults to 8192):
|
40 |
+
The maximum sequence length that this model might ever be used with.
|
41 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
42 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
43 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
|
44 |
+
The epsilon used by the rms normalization layers.
|
45 |
+
bos_token_id (`int`, *optional*, defaults to 128000):
|
46 |
+
Beginning of stream token id.
|
47 |
+
eos_token_id (`int`, *optional*, defaults to 128001):
|
48 |
+
End of stream token id.
|
49 |
+
pad_token_id (`int`, *optional*, defaults to 128001):
|
50 |
+
Padding token id.
|
51 |
+
mask_token_id (`int`, *optional*, defaults to 128002):
|
52 |
+
Mask token id.
|
53 |
+
pretraining_tp (`int`, *optional*, defaults to 1):
|
54 |
+
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
|
55 |
+
document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to
|
56 |
+
understand more about it. This value is necessary to ensure exact reproducibility of the pretraining
|
57 |
+
results. Please refer to [this issue](https://github.com/pytorch/pytorch/issues/76232).
|
58 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
59 |
+
Whether to tie weight embeddings
|
60 |
+
rope_theta (`float`, *optional*, defaults to 250000.0):
|
61 |
+
The base period of the RoPE embeddings.
|
62 |
+
rope_scaling (`Dict`, *optional*):
|
63 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
|
64 |
+
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
|
65 |
+
accordingly.
|
66 |
+
Expected contents:
|
67 |
+
`rope_type` (`str`):
|
68 |
+
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope'],
|
69 |
+
with 'default' being the original RoPE implementation.
|
70 |
+
`factor` (`float`, *optional*):
|
71 |
+
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
|
72 |
+
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
|
73 |
+
original maximum pre-trained length.
|
74 |
+
`original_max_position_embeddings` (`int`, *optional*):
|
75 |
+
Used with 'dynamic', 'longrope'. The original max position embeddings used during
|
76 |
+
pretraining.
|
77 |
+
`attention_factor` (`float`, *optional*):
|
78 |
+
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
|
79 |
+
computation. If unspecified, it defaults to value recommended by the implementation, using the
|
80 |
+
`factor` field to infer the suggested value.
|
81 |
+
`beta_fast` (`float`, *optional*):
|
82 |
+
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
|
83 |
+
ramp function. If unspecified, it defaults to 32.
|
84 |
+
`beta_slow` (`float`, *optional*):
|
85 |
+
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
|
86 |
+
ramp function. If unspecified, it defaults to 1.
|
87 |
+
`short_factor` (`List[float]`, *optional*):
|
88 |
+
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
|
89 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
90 |
+
size divided by the number of attention heads divided by 2
|
91 |
+
`long_factor` (`List[float]`, *optional*):
|
92 |
+
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
|
93 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
94 |
+
size divided by the number of attention heads divided by 2
|
95 |
+
attention_bias (`bool`, *optional*, defaults to `False`):
|
96 |
+
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
97 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
98 |
+
The dropout ratio for the attention probabilities.
|
99 |
+
mlp_bias (`bool`, *optional*, defaults to `False`):
|
100 |
+
Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
|
101 |
+
head_dim (`int`, *optional*):
|
102 |
+
The attention head dimension. If None, it will default to hidden_size // num_attention_heads
|
103 |
+
classifier_pooling (`str`, *optional*, defaults to `"late"`):
|
104 |
+
The pooling strategy to use for the classifier. Can be one of ['mean', 'eos'].
|
105 |
+
retrieval_pooling (`str`, *optional*, defaults to `"late"`):
|
106 |
+
The pooling strategy to use for the retriever. Can be one of ['mean', 'eos'].
|
107 |
+
"""
|
108 |
+
|
109 |
+
model_type = "sl_model"
|
110 |
+
|
111 |
+
def __init__(
|
112 |
+
self,
|
113 |
+
vocab_size=128256,
|
114 |
+
hidden_size=768,
|
115 |
+
intermediate_size=3072,
|
116 |
+
num_hidden_layers=12,
|
117 |
+
num_attention_heads=12,
|
118 |
+
num_key_value_heads=None,
|
119 |
+
hidden_act="silu",
|
120 |
+
max_position_embeddings=8192,
|
121 |
+
initializer_range=0.02,
|
122 |
+
rms_norm_eps=1e-05,
|
123 |
+
bos_token_id=128000,
|
124 |
+
eos_token_id=128001,
|
125 |
+
pad_token_id=128001,
|
126 |
+
mask_token_id=128002,
|
127 |
+
pretraining_tp=1,
|
128 |
+
tie_word_embeddings=False,
|
129 |
+
rope_theta=250000.0,
|
130 |
+
rope_scaling=None,
|
131 |
+
attention_bias=False,
|
132 |
+
attention_dropout=0.0,
|
133 |
+
mlp_bias=False,
|
134 |
+
head_dim=None,
|
135 |
+
classifier_pooling="mean",
|
136 |
+
retrieval_pooling="mean",
|
137 |
+
is_causal=False,
|
138 |
+
**kwargs,
|
139 |
+
):
|
140 |
+
if num_key_value_heads is None:
|
141 |
+
num_key_value_heads = num_attention_heads
|
142 |
+
|
143 |
+
if "use_cache" in kwargs:
|
144 |
+
kwargs.pop("use_cache", None)
|
145 |
+
|
146 |
+
super().__init__(
|
147 |
+
vocab_size=vocab_size,
|
148 |
+
hidden_size=hidden_size,
|
149 |
+
intermediate_size=intermediate_size,
|
150 |
+
num_hidden_layers=num_hidden_layers,
|
151 |
+
num_attention_heads=num_attention_heads,
|
152 |
+
num_key_value_heads=num_key_value_heads,
|
153 |
+
hidden_act=hidden_act,
|
154 |
+
max_position_embeddings=max_position_embeddings,
|
155 |
+
initializer_range=initializer_range,
|
156 |
+
rms_norm_eps=rms_norm_eps,
|
157 |
+
use_cache=False,
|
158 |
+
bos_token_id=bos_token_id,
|
159 |
+
eos_token_id=eos_token_id,
|
160 |
+
pad_token_id=pad_token_id,
|
161 |
+
pretraining_tp=pretraining_tp,
|
162 |
+
tie_word_embeddings=tie_word_embeddings,
|
163 |
+
rope_theta=rope_theta,
|
164 |
+
rope_scaling=rope_scaling,
|
165 |
+
attention_bias=attention_bias,
|
166 |
+
attention_dropout=attention_dropout,
|
167 |
+
mlp_bias=mlp_bias,
|
168 |
+
head_dim=head_dim,
|
169 |
+
**kwargs,
|
170 |
+
)
|
171 |
+
self.mask_token_id = mask_token_id
|
172 |
+
self.classifier_pooling = classifier_pooling
|
173 |
+
self.retrieval_pooling = retrieval_pooling
|
174 |
+
self.is_causal = is_causal
|
175 |
+
|
176 |
+
|
177 |
+
__all__ = ["SLModelConfig"]
|