BERTu (Maltese News Categories)

This model is a fine-tuned version of MLRS/BERTu on the MLRS/maltese_news_categories dataset. It achieves the following results on the test set:
- Loss: 0.1514
- F1: 0.6052
Intended uses & limitations
The model is fine-tuned on a specific task and it should be used on the same or similar task. Any limitations present in the base model are inherited.
Training procedure
The model was fine-tuned using a customised script.
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 2
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: inverse_sqrt
- lr_scheduler_warmup_ratio: 0.005
- num_epochs: 200.0
- early_stopping_patience: 20
Training results
Training Loss | Epoch | Step | Validation Loss | F1 |
---|---|---|---|---|
No log | 1.0 | 337 | 0.1525 | 0.1473 |
0.2654 | 2.0 | 674 | 0.1102 | 0.2997 |
0.1081 | 3.0 | 1011 | 0.0984 | 0.3558 |
0.1081 | 4.0 | 1348 | 0.0929 | 0.3846 |
0.0801 | 5.0 | 1685 | 0.0889 | 0.3935 |
0.0636 | 6.0 | 2022 | 0.0915 | 0.4238 |
0.0636 | 7.0 | 2359 | 0.0886 | 0.4707 |
0.0506 | 8.0 | 2696 | 0.0893 | 0.5307 |
0.0422 | 9.0 | 3033 | 0.0894 | 0.5242 |
0.0422 | 10.0 | 3370 | 0.0903 | 0.5166 |
0.0349 | 11.0 | 3707 | 0.0933 | 0.5229 |
0.0297 | 12.0 | 4044 | 0.0924 | 0.5512 |
0.0297 | 13.0 | 4381 | 0.0941 | 0.5428 |
0.0258 | 14.0 | 4718 | 0.0962 | 0.5798 |
0.0223 | 15.0 | 5055 | 0.0965 | 0.5618 |
0.0223 | 16.0 | 5392 | 0.0973 | 0.5852 |
0.0193 | 17.0 | 5729 | 0.0997 | 0.5900 |
0.0165 | 18.0 | 6066 | 0.1006 | 0.5874 |
0.0165 | 19.0 | 6403 | 0.1011 | 0.5824 |
0.015 | 20.0 | 6740 | 0.1037 | 0.5897 |
0.013 | 21.0 | 7077 | 0.1026 | 0.5919 |
0.013 | 22.0 | 7414 | 0.1040 | 0.5985 |
0.0115 | 23.0 | 7751 | 0.1053 | 0.5999 |
0.0102 | 24.0 | 8088 | 0.1059 | 0.5912 |
0.0102 | 25.0 | 8425 | 0.1069 | 0.6226 |
0.009 | 26.0 | 8762 | 0.1081 | 0.6065 |
0.0082 | 27.0 | 9099 | 0.1088 | 0.6001 |
0.0082 | 28.0 | 9436 | 0.1105 | 0.6129 |
0.0069 | 29.0 | 9773 | 0.1103 | 0.6199 |
0.0065 | 30.0 | 10110 | 0.1133 | 0.6117 |
0.0065 | 31.0 | 10447 | 0.1137 | 0.6100 |
0.0059 | 32.0 | 10784 | 0.1141 | 0.6053 |
0.005 | 33.0 | 11121 | 0.1162 | 0.6175 |
0.005 | 34.0 | 11458 | 0.1161 | 0.6095 |
0.0048 | 35.0 | 11795 | 0.1182 | 0.6111 |
0.0042 | 36.0 | 12132 | 0.1195 | 0.6027 |
0.0042 | 37.0 | 12469 | 0.1206 | 0.6080 |
0.004 | 38.0 | 12806 | 0.1212 | 0.6075 |
0.0037 | 39.0 | 13143 | 0.1220 | 0.6260 |
0.0037 | 40.0 | 13480 | 0.1265 | 0.6014 |
0.0033 | 41.0 | 13817 | 0.1246 | 0.6057 |
0.0031 | 42.0 | 14154 | 0.1232 | 0.6207 |
0.0031 | 43.0 | 14491 | 0.1261 | 0.6253 |
0.0029 | 44.0 | 14828 | 0.1256 | 0.6100 |
0.0027 | 45.0 | 15165 | 0.1261 | 0.6194 |
0.0025 | 46.0 | 15502 | 0.1272 | 0.6207 |
0.0025 | 47.0 | 15839 | 0.1279 | 0.6195 |
0.0023 | 48.0 | 16176 | 0.1293 | 0.6199 |
0.0021 | 49.0 | 16513 | 0.1315 | 0.6085 |
0.0021 | 50.0 | 16850 | 0.1315 | 0.6186 |
0.002 | 51.0 | 17187 | 0.1299 | 0.6117 |
0.002 | 52.0 | 17524 | 0.1312 | 0.6320 |
0.002 | 53.0 | 17861 | 0.1337 | 0.6232 |
0.0018 | 54.0 | 18198 | 0.1344 | 0.6135 |
0.0017 | 55.0 | 18535 | 0.1339 | 0.6201 |
0.0017 | 56.0 | 18872 | 0.1370 | 0.6221 |
0.0017 | 57.0 | 19209 | 0.1334 | 0.6133 |
0.0015 | 58.0 | 19546 | 0.1352 | 0.6199 |
0.0015 | 59.0 | 19883 | 0.1370 | 0.6189 |
0.0013 | 60.0 | 20220 | 0.1391 | 0.6155 |
0.0013 | 61.0 | 20557 | 0.1409 | 0.6143 |
0.0013 | 62.0 | 20894 | 0.1386 | 0.6218 |
0.0012 | 63.0 | 21231 | 0.1406 | 0.6225 |
0.0012 | 64.0 | 21568 | 0.1400 | 0.6134 |
0.0012 | 65.0 | 21905 | 0.1421 | 0.6221 |
0.0011 | 66.0 | 22242 | 0.1425 | 0.6224 |
0.0011 | 67.0 | 22579 | 0.1433 | 0.6235 |
0.0011 | 68.0 | 22916 | 0.1440 | 0.6294 |
0.0011 | 69.0 | 23253 | 0.1440 | 0.6230 |
0.001 | 70.0 | 23590 | 0.1443 | 0.6285 |
0.001 | 71.0 | 23927 | 0.1462 | 0.6279 |
0.0009 | 72.0 | 24264 | 0.1466 | 0.6281 |
Framework versions
- Transformers 4.51.1
- Pytorch 2.7.0+cu126
- Datasets 3.2.0
- Tokenizers 0.21.1
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Permissions beyond the scope of this license may be available at https://mlrs.research.um.edu.mt/.
Citation
This work was first presented in MELABenchv1: Benchmarking Large Language Models against Smaller Fine-Tuned Models for Low-Resource Maltese NLP. Cite it as follows:
@inproceedings{micallef-borg-2025-melabenchv1,
title = "{MELAB}enchv1: Benchmarking Large Language Models against Smaller Fine-Tuned Models for Low-Resource {M}altese {NLP}",
author = "Micallef, Kurt and
Borg, Claudia",
editor = "Che, Wanxiang and
Nabende, Joyce and
Shutova, Ekaterina and
Pilehvar, Mohammad Taher",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2025",
month = jul,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-acl.1053/",
doi = "10.18653/v1/2025.findings-acl.1053",
pages = "20505--20527",
ISBN = "979-8-89176-256-5",
}
- Downloads last month
- -
Model tree for MLRS/BERTu_maltese-news-categories
Base model
MLRS/BERTuDataset used to train MLRS/BERTu_maltese-news-categories
Collection including MLRS/BERTu_maltese-news-categories
Evaluation results
- Macro-averaged F1 on MLRS/maltese_news_categoriesMELABench Leaderboard60.520