Feature Extraction
Transformers
PyTorch
English
Chinese
File size: 27,387 Bytes
a15d355
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
from typing import Iterable, Optional, Tuple, Union, List 

import os
import math
import json
import torch
import numpy as np
import torch.nn as nn
import torch.utils.checkpoint
import torch.nn.functional as F

from PIL import Image
from einops import rearrange
from functools import partial
from timm.layers import DropPath
from dataclasses import dataclass
from torchvision import transforms
from transformers.utils import logging
from transformers.activations import ACT2FN
from transformers.modeling_utils import PreTrainedModel
from transformers.configuration_utils import PretrainedConfig
from transformers.modeling_outputs import BaseModelOutput, ModelOutput
from flash_attn.bert_padding import pad_input
from flash_attn.flash_attn_interface import flash_attn_varlen_qkvpacked_func as flash_attn_unpadded_qkvpacked_func

logger = logging.get_logger(__name__)


def rotate_half(x):
    """Rotates half the hidden dims of the input."""
    x1 = x[..., : x.shape[-1] // 2]
    x2 = x[..., x.shape[-1] // 2 :]
    return torch.cat((-x2, x1), dim=-1)


def apply_rotary_pos_emb_vision(tensor: torch.Tensor, freqs: torch.Tensor) -> torch.Tensor:
    orig_dtype = tensor.dtype
    tensor = tensor.float()
    cos = freqs.cos()
    sin = freqs.sin()
    cos = cos.unsqueeze(1).repeat(1, 1, 2).unsqueeze(0).float()
    sin = sin.unsqueeze(1).repeat(1, 1, 2).unsqueeze(0).float()
    output = (tensor * cos) + (rotate_half(tensor) * sin)
    output = output.to(orig_dtype)
    return output


class VisionRotaryEmbedding2D(nn.Module):
    def __init__(self, dim: int, theta: float = 10000.0) -> None:
        super().__init__()
        inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim))
        self.register_buffer("inv_freq", inv_freq, persistent=False)

    def forward_(self, seqlen: int) -> torch.Tensor:
        seq = torch.arange(seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
        freqs = torch.outer(seq, self.inv_freq)
        return freqs
    
    def forward(self, grid_shapes, spatial_merge_size=2):
        pos_ids = []
        s = spatial_merge_size
        for t, h, w in grid_shapes:
            hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w)
            hpos_ids = hpos_ids.reshape(h // s, s, w // s, s)
            hpos_ids = hpos_ids.permute(0, 2, 1, 3)
            hpos_ids = hpos_ids.flatten()
            wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1)
            wpos_ids = wpos_ids.reshape(h // s, s, w // s, s)
            wpos_ids = wpos_ids.permute(0, 2, 1, 3)
            wpos_ids = wpos_ids.flatten()
            pos_ids.append(torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1))
        pos_ids = torch.cat(pos_ids, dim=0)
        max_grid_size = torch.tensor(grid_shapes).max()
        rotary_pos_emb_full = self.forward_(max_grid_size)
        rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1)
        return rotary_pos_emb


class FlashAttention(nn.Module):
    # https://github.com/Dao-AILab/flash-attention/blob/v0.2.8/flash_attn/flash_attention.py
    """Implement the scaled dot product attention with softmax.
    Arguments
    ---------
        softmax_scale: The temperature to use for the softmax attention.
                      (default: 1/sqrt(d_keys) where d_keys is computed at
                      runtime)
        attention_dropout: The dropout rate to apply to the attention
                           (default: 0.0)
    """

    def __init__(self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None):
        super().__init__()
        self.softmax_scale = softmax_scale
        self.dropout_p = attention_dropout
        self._deterministic = True

    def forward(self, qkv, key_padding_mask=None, causal=False, cu_seqlens=None,
                max_s=None, need_weights=False):
        """Implements the multihead softmax attention.
        Arguments
        ---------
            qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None
                if unpadded: (nnz, 3, h, d)
            key_padding_mask: a bool tensor of shape (B, S)
        """
        assert not need_weights
        assert qkv.dtype in [torch.float16, torch.bfloat16]
        assert qkv.is_cuda

        if cu_seqlens is None:
            batch_size = qkv.shape[0]
            seqlen = qkv.shape[1]
            if key_padding_mask is None:
                qkv = rearrange(qkv, 'b s ... -> (b s) ...')
                max_s = seqlen
                cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
                                          device=qkv.device)
                output = flash_attn_unpadded_qkvpacked_func(
                    qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
                    softmax_scale=self.softmax_scale, causal=causal
                )
                output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
            else:
                qkv = qkv.squeeze()  # [1, n, h, d] -> [n, h, d]
                seqlens_in_batch = key_padding_mask.sum(dim=-1, dtype=torch.int32)
                max_seqlen_in_batch = seqlens_in_batch.max().item()
                cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
                output = flash_attn_unpadded_qkvpacked_func(
                    qkv, cu_seqlens, max_seqlen_in_batch, self.dropout_p if self.training else 0.0,
                    softmax_scale=self.softmax_scale, causal=causal, deterministic=self._deterministic
                )
                output = output.unsqueeze(0)
        else:
            assert max_s is not None
            output = flash_attn_unpadded_qkvpacked_func(
                qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
                softmax_scale=self.softmax_scale, causal=causal
            )

        return output, None


class RMSNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-6):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.variance_epsilon = eps

    def forward(self, hidden_states):
        input_dtype = hidden_states.dtype
        hidden_states = hidden_states.to(torch.float32)
        variance = hidden_states.pow(2).mean(-1, keepdim=True)
        hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
        return self.weight * hidden_states.to(input_dtype)


try:
    from apex.normalization import FusedRMSNorm
    RMSNorm = FusedRMSNorm  # noqa
    logger.info('Discovered apex.normalization.FusedRMSNorm - will use it instead of RMSNorm')
except ImportError:  # using the normal RMSNorm
    pass
except Exception:
    logger.warning('discovered apex but it failed to load, falling back to RMSNorm')
    pass


@dataclass
class BaseModelOutputWithKwargs(ModelOutput):
    last_hidden_state: torch.FloatTensor = None
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    kwargs: Optional[dict] = None


class UniViTARVisionConfig(PretrainedConfig):
    def __init__(
            self,
            resolution_mode="native",
            init_method="xavier",
            num_channels=3,
            patch_size=14,
            temporal_patch_size=2,
            image_size=1792,
            patch_dropout=0.0,
            attention_dropout=0.0,
            dropout=0.0,
            drop_path_rate=0.0,
            initializer_range=1e-10,
            num_hidden_layers=24,
            num_attention_heads=16,
            hidden_size=1024,
            intermediate_size=4224,
            patch_embedding_bias=True,
            qk_normalization=True,
            qkv_bias=False,
            initializer_factor=0.1,
            use_pre_norm=False,
            pe_type="rope2d",
            rope_theta=10000,
            spatial_merge_size=1,
            norm_type="RMSNorm",
            hidden_act='SwiGLU',
            use_flash_attn=True,
            layer_norm_eps=1e-6,
            min_tokens=576,
            max_tokens=16384,
            image_mean=(0.485, 0.456, 0.406),
            image_std=(0.229, 0.224, 0.225),
            relarge_ratio=1.0,
            **kwargs,
    ):
        super().__init__(**kwargs)

        self.resolution_mode = resolution_mode
        self.init_method = init_method
        self.pe_type = pe_type
        self.rope_theta = rope_theta
        self.temporal_patch_size = temporal_patch_size
        self.num_channels = num_channels
        self.patch_size = patch_size
        self.image_size = image_size
        self.patch_dropout = patch_dropout
        self.attention_dropout = attention_dropout
        self.dropout = dropout
        self.drop_path_rate = drop_path_rate
        self.initializer_range = initializer_range
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads 
        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.patch_embedding_bias = patch_embedding_bias
        self.qk_normalization = qk_normalization
        self.qkv_bias = qkv_bias
        self.initializer_factor = initializer_factor
        self.use_pre_norm = use_pre_norm
        self.norm_type = norm_type
        self.hidden_act = hidden_act
        self.use_flash_attn = use_flash_attn
        self.layer_norm_eps = layer_norm_eps
        self.spatial_merge_size = spatial_merge_size
        self.min_tokens = min_tokens
        self.max_tokens = max_tokens
        self.image_mean = image_mean
        self.image_std = image_std
        self.relarge_ratio = relarge_ratio

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig':
        config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)

        if 'vision_config' in config_dict:
            config_dict = config_dict['vision_config']

        if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type:
            logger.warning(
                f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
                f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.'
            )

        return cls.from_dict(config_dict, **kwargs)


class UniViTARImageTransform(object):
    def __init__(self, config):
        self.config = config
        self.resolution_mode = config.resolution_mode
        
        self.image_mean, self.image_std = config.image_mean, config.image_std
        self.patch_size = config.patch_size
        self.temporal_patch_size = config.temporal_patch_size
        self.spatial_merge_size = config.spatial_merge_size
        self.resize_factor = config.patch_size * config.spatial_merge_size * config.resize_factor
        self.relarge_ratio = config.relarge_ratio

        self.forced_transform = None
        self.min_pixels, self.max_pixels = None, None
        assert self.resolution_mode in ["native", "224", "378", "756"]
        if self.resolution_mode == "native":
            self.min_pixels = config.min_tokens * config.patch_size * config.patch_size
            self.max_pixels = config.max_tokens * config.patch_size * config.patch_size
        else:
            image_size = int(self.resolution_mode)
            self.forced_transform = transforms.Compose([
                    transforms.Resize((image_size, image_size), interpolation=transforms.InterpolationMode.BICUBIC),
                    self.convert_to_rgb,
                    transforms.ToTensor(),
                    transforms.Normalize(mean=self.image_mean, std=self.image_std)
                ]
            )

    def __call__(self, images):
        
        if not isinstance(images, List):
            images = [images]  # shape of each image is [h, w, c]
        assert len(images) == 1 or len(images) % self.temporal_patch_size == 0

        if self.resolution_mode == "native":
            sample_num = 1 if len(images) == 1 else len(images) // self.temporal_patch_size
            min_pixels, max_pixels = self.min_pixels // sample_num, self.max_pixels // sample_num
            width, height = images[0].size  # (w, h)
            if self.relarge_ratio > 0 and self.relarge_ratio != 1:
                height, width = int(height * self.relarge_ratio), int(width * self.relarge_ratio)
            resized_height, resized_width = self.smart_resize(height, width, self.resize_factor, min_pixels, max_pixels)
            processed_images = []
            for image in images:
                image = self.convert_to_rgb(image)
                image = self.resize(image, size=(resized_height, resized_width), resample=Image.Resampling.BICUBIC)
                image = self.rescale(image, scale=1/255)
                image = self.normalize(image=image, mean=self.image_mean, std=self.image_std)
                processed_images.append(image)
            processed_images = np.array(processed_images)  # (num, h, w, c)
            processed_images = processed_images.transpose(0, 3, 1, 2)  # (num, c, h, w)
        else:
            processed_images = [self.forced_transform(image).numpy() for image in images]
            processed_images = np.array(processed_images)

        if processed_images.shape[0] == 1:
            processed_images = np.tile(processed_images, (self.temporal_patch_size, 1, 1, 1))

        return torch.from_numpy(processed_images)    
    
    @staticmethod
    def convert_to_rgb(image):
        if not isinstance(image, Image.Image):
            return image
        # `image.convert("RGB")` would only work for .jpg images, as it creates a wrong background
        # for transparent images. The call to `alpha_composite` handles this case
        if image.mode == "RGB":
            return image
        image_rgba = image.convert("RGBA")
        background = Image.new("RGBA", image_rgba.size, (255, 255, 255))
        alpha_composite = Image.alpha_composite(background, image_rgba)
        alpha_composite = alpha_composite.convert("RGB")
        return alpha_composite
    
    @staticmethod
    def resize(image, size, resample, return_numpy: bool = True) -> np.ndarray:
        """
        Resizes `image` to `(height, width)` specified by `size` using the PIL library.
        """
        if not len(size) == 2:
            raise ValueError("size must have 2 elements")
        assert isinstance(image, Image.Image)
        height, width = size
        resample = resample if resample is not None else Image.Resampling.BILINEAR
        # PIL images are in the format (width, height)
        resized_image = image.resize((width, height), resample=resample, reducing_gap=None)
        if return_numpy:
            resized_image = np.array(resized_image)
            resized_image = np.expand_dims(resized_image, axis=-1) if resized_image.ndim == 2 else resized_image
        return resized_image

    @staticmethod
    def rescale(image: np.ndarray, scale: float, dtype: np.dtype = np.float32) -> np.ndarray:
        if not isinstance(image, np.ndarray):
            raise TypeError(f"Input image must be of type np.ndarray, got {type(image)}")
        rescaled_image = image * scale
        rescaled_image = rescaled_image.astype(dtype)
        return rescaled_image

    @staticmethod
    def normalize(image, mean, std) -> np.ndarray:
        """
        Normalizes `image` using the mean and standard deviation specified by `mean` and `std`.
        image = (image - mean) / std
        """
        if not isinstance(image, np.ndarray):
            raise ValueError("image must be a numpy array")
        num_channels = image.shape[-1]
        # We cast to float32 to avoid errors that can occur when subtracting uint8 values.
        # We preserve the original dtype if it is a float type to prevent upcasting float16.
        if not np.issubdtype(image.dtype, np.floating):
            image = image.astype(np.float32)
        if isinstance(mean, Iterable):
            if len(mean) != num_channels:
                raise ValueError(f"mean must have {num_channels} elements if it is an iterable, got {len(mean)}")
        else:
            mean = [mean] * num_channels
        mean = np.array(mean, dtype=image.dtype)
        if isinstance(std, Iterable):
            if len(std) != num_channels:
                raise ValueError(f"std must have {num_channels} elements if it is an iterable, got {len(std)}")
        else:
            std = [std] * num_channels
        std = np.array(std, dtype=image.dtype)
        image = (image - mean) / std
        return image
    
    @staticmethod
    def smart_resize(height, width, factor, min_pixels, max_pixels):
        """ 
        1. Both dimensions (height and width) are divisible by 'factor'.
        2. The total number of pixels is within the range ['min_pixels', 'max_pixels'].
        3. The aspect ratio of the image is maintained as closely as possible.
        """
        if height < factor or width < factor:
            if height < factor:
                ratio = factor / height
                height, width = factor, int(ratio * width) + 1
            if width < factor:
                ratio = factor / width
                width, height = factor, int(ratio * height) + 1
        h_bar = round(height / factor) * factor
        w_bar = round(width / factor) * factor
        if h_bar * w_bar > max_pixels:
            beta = math.sqrt((height * width) / max_pixels)
            h_bar = math.floor(height / beta / factor) * factor
            w_bar = math.floor(width / beta / factor) * factor
        elif h_bar * w_bar < min_pixels:
            beta = math.sqrt(min_pixels / (height * width))
            h_bar = math.ceil(height * beta / factor) * factor
            w_bar = math.ceil(width * beta / factor) * factor
        return h_bar, w_bar


class SwiGLU(nn.Module):
    def __init__(self, config: UniViTARVisionConfig):
        super().__init__()
        self.config = config
        self.inner_hidden_size = int(config.intermediate_size * 2 / 3)
        self.act = ACT2FN['silu']
        self.fc1 = nn.Linear(config.hidden_size, self.inner_hidden_size)
        self.fc2 = nn.Linear(self.inner_hidden_size, config.hidden_size)
        self.fc3 = nn.Linear(config.hidden_size, self.inner_hidden_size)
        self.norm = RMSNorm(self.inner_hidden_size, eps=config.layer_norm_eps)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        hidden_states = self.fc1(x)
        hidden_states = self.act(hidden_states)
        hidden_states = self.fc2(self.norm(hidden_states * self.fc3(x)))
        return hidden_states


class Attention(nn.Module):
    """Multi-headed attention from 'Attention Is All You Need' paper"""
    def __init__(self, config: UniViTARVisionConfig):
        super().__init__()
        self.config = config
        self.embed_dim = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_dim = self.embed_dim // self.num_heads
        assert config.use_flash_attn is True,  "FlashAttention must be used!"
        assert self.head_dim * self.num_heads == self.embed_dim
        
        self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=config.qkv_bias)
        self.inner_attn = FlashAttention(attention_dropout=config.attention_dropout)
        self.proj = nn.Linear(self.embed_dim, self.embed_dim)
        self.proj_drop = nn.Dropout(config.dropout)
        if self.config.qk_normalization:
            self.q_norm = RMSNorm(self.embed_dim, eps=config.layer_norm_eps)
            self.k_norm = RMSNorm(self.embed_dim, eps=config.layer_norm_eps) 

    def forward(self, hidden_states: torch.Tensor, **kwargs) -> torch.Tensor: 
        key_padding_mask = kwargs.get("key_padding_mask", None)
        rotary_pos_emb = kwargs["rotary_pos_emb"]

        qkv = self.qkv(hidden_states)
        qkv = rearrange(qkv, '... (three h d) -> ... three h d', three=3, h=self.num_heads)
        bind_dim = qkv.dim() - 3
        target_dtype = qkv.dtype
        q, k, v = qkv.unbind(bind_dim)
        q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0)
        k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0)
        if self.config.qk_normalization:
            q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
            k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
        qkv = torch.stack([q, k, v], dim=bind_dim).to(target_dtype)
        context, _ = self.inner_attn(qkv, key_padding_mask=key_padding_mask, causal=False)
        
        outs = self.proj(rearrange(context, '... h d -> ... (h d)')) # input expected to be: [b s h d] or [s h d]
        outs = self.proj_drop(outs)

        return outs


class UniViTARVisionEmbeddings(nn.Module):
    def __init__(self, config: UniViTARVisionConfig):
        super().__init__()
        self.config = config
        self.embed_dim = config.hidden_size
        self.patch_size = config.patch_size
        self.temporal_patch_size = config.temporal_patch_size
        self.kernel_size = [self.temporal_patch_size, self.patch_size, self.patch_size]
        self.use_bias = config.patch_embedding_bias
        self.patch_embedding = nn.Conv3d(
            in_channels=3, out_channels=self.embed_dim, kernel_size=self.kernel_size, stride=self.kernel_size, bias=self.use_bias)

    def forward(self, pixel_values: torch.FloatTensor, **kwargs) -> torch.Tensor:  
        pixel_values = pixel_values.view(-1, 3, *self.kernel_size)
        patch_embeds = self.patch_embedding(pixel_values)
        embeddings = patch_embeds.view(1, -1, self.embed_dim)
        self.num_patches = embeddings.shape[1]
        return embeddings


class UniViTARVisionEncoderLayer(nn.Module):
    def __init__(self, config: UniViTARVisionConfig, drop_path_rate: float):
        super().__init__()
        self.embed_dim = config.hidden_size
        assert config.hidden_act == "SwiGLU"

        self.attn = Attention(config)
        self.norm1 = RMSNorm(self.embed_dim, eps=config.layer_norm_eps)
        self.norm2 = RMSNorm(self.embed_dim, eps=config.layer_norm_eps)
        self.mlp = SwiGLU(config)
        
        self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
        self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
        self.drop_path1 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
        self.drop_path2 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()

    def forward(self, hidden_states: torch.Tensor, **kwargs):
        hidden_states = hidden_states + self.drop_path1(self.attn(self.norm1(hidden_states), **kwargs) * self.ls1)
        hidden_states = hidden_states + self.drop_path2(self.mlp(self.norm2(hidden_states)) * self.ls2)
        return hidden_states


class UniViTARVisionEncoder(nn.Module):
    """ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. """
    def __init__(self, config: UniViTARVisionConfig):
        super().__init__()
        self.config = config
        self.gradient_checkpointing = True

        # stochastic depth decay rule
        dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
        self.layers = nn.ModuleList([UniViTARVisionEncoderLayer(config, dpr[idx]) for idx in range(config.num_hidden_layers)])
        if self.config.pe_type == "rope2d":
            head_dim = config.hidden_size // config.num_attention_heads
            self.rotary_pos_emb = VisionRotaryEmbedding2D(head_dim // 2, theta=self.config.rope_theta)
        else:
            raise NotImplementedError

    def forward(self, inputs_embeds, output_hidden_states = False, **kwargs):
        kwargs["rotary_pos_emb"] = self.rotary_pos_emb(kwargs["grid_shapes"], self.config.spatial_merge_size)
        
        encoder_states = () if output_hidden_states else None
        hidden_states = inputs_embeds
        for idx, encoder_layer in enumerate(self.layers):
            if output_hidden_states:
                encoder_states = encoder_states + (hidden_states,)
            if self.gradient_checkpointing and self.training:
                encoder_layer_forward = partial(encoder_layer, **kwargs)
                layer_outputs = torch.utils.checkpoint.checkpoint(encoder_layer_forward, hidden_states, use_reentrant=True)
            else:
                layer_outputs = encoder_layer(hidden_states, **kwargs)
            hidden_states = layer_outputs
        if output_hidden_states:
            encoder_states = encoder_states + (hidden_states,)

        return BaseModelOutputWithKwargs(last_hidden_state=hidden_states, hidden_states=encoder_states, kwargs=kwargs)


class UniViTARVisionModel(PreTrainedModel):
    main_input_name = 'pixel_values'
    config_class = UniViTARVisionConfig
    _no_split_modules = ['UniViTARVisionEncoderLayer']

    def __init__(self, model_config_path, *args, **kwargs):

        model_config_dict = json.load(open(model_config_path, "r", encoding="utf8"))
        config = UniViTARVisionConfig.from_dict(model_config_dict)

        super().__init__(config)
        self.config = config
        self.image_transform = UniViTARImageTransform(config)

        self.embeddings = UniViTARVisionEmbeddings(config)
        self.encoder = UniViTARVisionEncoder(config)

    def get_input_embeddings(self):
        return self.embeddings
        
    def get_padding_mask(self, grid_shapes):
        seq_len = torch.tensor([int((np.prod(thw) - 1) + 1) for thw in grid_shapes])
        max_len = torch.max(seq_len)
        batch_size = len(grid_shapes)
        mask = torch.zeros((batch_size, max_len), dtype=torch.long)
        range_matrix = torch.arange(max_len).expand(batch_size, max_len)
        mask = (range_matrix < seq_len.unsqueeze(1))
        return mask.cuda()

    def forward(self, pixel_values, output_hidden_states = False, **kwargs):
        assert len(pixel_values.shape) == 2, "(batch_num_tokens, hidden_size)"
        assert "grid_shapes" in kwargs, "grid_shapes: [(t, h, w), ..., (t, h, w)]"
        kwargs["key_padding_mask"] = self.get_padding_mask(kwargs["grid_shapes"])
        hidden_states = self.embeddings(pixel_values, **kwargs)
        encoder_outputs = self.encoder(hidden_states, output_hidden_states, **kwargs)
        last_hidden_state = encoder_outputs.last_hidden_state
        return last_hidden_state.squeeze(0)
    
    def data_patchify(self, input_data):
        t, c, h, w = input_data.shape
        grid_t, grid_h, grid_w = t // self.config.temporal_patch_size, h // self.config.patch_size, w // self.config.patch_size
        grid_size = c * self.config.temporal_patch_size * self.config.patch_size * self.config.patch_size
        input_data = input_data.reshape(
            grid_t, self.config.temporal_patch_size, c, 
            grid_h // self.config.spatial_merge_size, self.config.spatial_merge_size, self.config.patch_size, 
            grid_w // self.config.spatial_merge_size, self.config.spatial_merge_size, self.config.patch_size
        )
        input_data = input_data.permute(0, 3, 6, 4, 7, 2, 1, 5, 8)
        input_data = input_data.reshape(grid_t * grid_h * grid_w, grid_size).contiguous()
        grid_shape = (grid_t, grid_h, grid_w)
        return input_data, grid_shape