π SqlGPT LoRA fine-tuned on WikiSQL
This model is a LoRA fine-tuned version of Salesforce/codet5-small for natural language to SQL query generation on the WikiSQL dataset.
It uses PEFT (LoRA) to adapt the base model efficiently with minimal extra parameters.
Useful for learning and prototyping text-to-SQL tasks on simple table schemas.
π Training Details
- Base Model:
Salesforce/codet5-small
- Adapter: LoRA (r=8, alpha=16) on attention
q
andv
modules. - Dataset: WikiSQL (21k train, 3k val)
- Input Format:
question: <QUESTION> table: <TABLE_HEADERS>
- Target: Human-readable SQL query
- Epochs: 1β3 recommended for small runs.
- Framework: π€ Transformers + PEFT
π§© Example Usage
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
# Replace with your actual HF repo name
model_name = "Mahendra1742/SqlGPT"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
# Example input
question = "How many employees are in the Marketing department?"
table = "| department | employees |"
prompt = f"question: {question} table: {table}"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=128)
print("OUTPUT :- ")
print(" ")
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
Input
question: How many cities have a population over 1 million? table: | City | Population |
Output
SELECT COUNT(*) FROM table WHERE Population > 1000000
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
π
Ask for provider support