layoutlm-ttform / README.md
Malisha's picture
Upload TFLayoutLMForTokenClassification
976ab5a
---
tags:
- generated_from_keras_callback
model-index:
- name: layoutlm-ttform
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# layoutlm-ttform
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.8035
- Validation Loss: 0.6094
- Train Overall Precision: 0.8793
- Train Overall Recall: 0.7969
- Train Overall F1: 0.8361
- Train Overall Accuracy: 0.9204
- Epoch: 7
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 3e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: mixed_float16
### Training results
| Train Loss | Validation Loss | Train Overall Precision | Train Overall Recall | Train Overall F1 | Train Overall Accuracy | Epoch |
|:----------:|:---------------:|:-----------------------:|:--------------------:|:----------------:|:----------------------:|:-----:|
| 1.9166 | 1.6851 | 0.125 | 0.1562 | 0.1389 | 0.6567 | 0 |
| 1.7084 | 1.4917 | 0.3793 | 0.3438 | 0.3607 | 0.7811 | 1 |
| 1.5343 | 1.3162 | 0.4151 | 0.3438 | 0.3761 | 0.7811 | 2 |
| 1.3620 | 1.1511 | 0.4528 | 0.375 | 0.4103 | 0.8159 | 3 |
| 1.2149 | 0.9970 | 0.5818 | 0.5 | 0.5378 | 0.8358 | 4 |
| 1.0742 | 0.8546 | 0.8393 | 0.7344 | 0.7833 | 0.8905 | 5 |
| 0.9422 | 0.7259 | 0.8393 | 0.7344 | 0.7833 | 0.9154 | 6 |
| 0.8035 | 0.6094 | 0.8793 | 0.7969 | 0.8361 | 0.9204 | 7 |
### Framework versions
- Transformers 4.26.0
- TensorFlow 2.9.2
- Datasets 2.9.0
- Tokenizers 0.13.2