File size: 2,402 Bytes
0c434ec eaaa8d5 0c434ec eaaa8d5 0c434ec eaaa8d5 0c434ec eaaa8d5 0c434ec eaaa8d5 0c434ec eaaa8d5 0c434ec eaaa8d5 0c434ec eaaa8d5 0c434ec eaaa8d5 0c434ec eaaa8d5 0c434ec eaaa8d5 0c434ec eaaa8d5 0c434ec eaaa8d5 0c434ec eaaa8d5 0c434ec eaaa8d5 0c434ec eaaa8d5 0c434ec eaaa8d5 0c434ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
- sentiment-analysis
- movie-reviews
datasets:
- imdb
metrics:
- accuracy
model-index:
- name: malli_finetuned_model
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: imdb
type: imdb
metrics:
- type: accuracy
value: 1.0000
---
# malli_finetuned_model
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the IMDB movie reviews dataset.
It achieves an accuracy of **100.0%** on the test set.
## Model Description
This is a sentiment analysis model specifically trained on movie reviews. It can classify text as either positive or negative sentiment.
## Intended Uses & Limitations
**Intended Uses:**
- Sentiment analysis of movie reviews
- General sentiment classification of English text
- Educational purposes and research
**Limitations:**
- Trained specifically on movie reviews, may not generalize well to other domains
- English language only
- Binary classification (positive/negative) - no neutral sentiment
## Training Procedure
### Training Data
The model was fine-tuned on the IMDB movie reviews dataset:
- Training samples: 2250
- Validation samples: 250
- Test samples: 500
### Training Hyperparameters
- Learning rate: 2e-05
- Train batch size: 16
- Eval batch size: 16
- Number of epochs: 3
- Optimizer: AdamW
- Weight decay: 0.01
### Results
| Metric | Value |
|--------|-------|
| Accuracy | 1.0000 |
## Usage
```python
from transformers import pipeline
# Load the model
classifier = pipeline("text-classification", model="Mallikarjunareddy/malli_finetuned_model")
# Classify text
result = classifier("This movie was absolutely amazing!")
print(result)
# Output: [{'label': 'LABEL_1', 'score': 0.9998}]
# LABEL_0 = Negative, LABEL_1 = Positive
```
## Model Performance
The model shows strong performance on movie review sentiment analysis:
- **Test Accuracy: 100.0%**
- Baseline (random guessing): 50.0%
- Improvement: +50.0 percentage points
## Citation
```
@misc{malli_finetuned_model_2024,
author = {Your Name},
title = {malli_finetuned_model: Fine-tuned IMDB Sentiment Analysis},
year = {2024},
publisher = {Hugging Face},
howpublished = {\url{https://huggingface.co/Mallikarjunareddy/malli_finetuned_model}}
}
```
|