File size: 2,402 Bytes
0c434ec
eaaa8d5
 
 
 
 
0c434ec
 
 
 
eaaa8d5
 
 
 
0c434ec
 
 
 
 
 
 
 
 
 
eaaa8d5
 
 
 
0c434ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eaaa8d5
0c434ec
eaaa8d5
0c434ec
 
 
 
eaaa8d5
0c434ec
eaaa8d5
0c434ec
 
 
 
 
 
eaaa8d5
0c434ec
eaaa8d5
0c434ec
 
 
eaaa8d5
0c434ec
eaaa8d5
0c434ec
 
eaaa8d5
0c434ec
 
eaaa8d5
0c434ec
 
 
 
 
 
eaaa8d5
0c434ec
eaaa8d5
0c434ec
 
 
 
eaaa8d5
0c434ec
eaaa8d5
0c434ec
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
- sentiment-analysis
- movie-reviews
datasets:
- imdb
metrics:
- accuracy
model-index:
- name: malli_finetuned_model
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: imdb
      type: imdb
    metrics:
    - type: accuracy
      value: 1.0000
---

# malli_finetuned_model

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the IMDB movie reviews dataset.
It achieves an accuracy of **100.0%** on the test set.

## Model Description

This is a sentiment analysis model specifically trained on movie reviews. It can classify text as either positive or negative sentiment.

## Intended Uses & Limitations

**Intended Uses:**
- Sentiment analysis of movie reviews
- General sentiment classification of English text
- Educational purposes and research

**Limitations:**
- Trained specifically on movie reviews, may not generalize well to other domains
- English language only
- Binary classification (positive/negative) - no neutral sentiment

## Training Procedure

### Training Data

The model was fine-tuned on the IMDB movie reviews dataset:
- Training samples: 2250
- Validation samples: 250  
- Test samples: 500

### Training Hyperparameters

- Learning rate: 2e-05
- Train batch size: 16
- Eval batch size: 16
- Number of epochs: 3
- Optimizer: AdamW
- Weight decay: 0.01

### Results

| Metric | Value |
|--------|-------|
| Accuracy | 1.0000 |

## Usage

```python
from transformers import pipeline

# Load the model
classifier = pipeline("text-classification", model="Mallikarjunareddy/malli_finetuned_model")

# Classify text
result = classifier("This movie was absolutely amazing!")
print(result)
# Output: [{'label': 'LABEL_1', 'score': 0.9998}]
# LABEL_0 = Negative, LABEL_1 = Positive
```

## Model Performance

The model shows strong performance on movie review sentiment analysis:
- **Test Accuracy: 100.0%**
- Baseline (random guessing): 50.0%
- Improvement: +50.0 percentage points

## Citation

```
@misc{malli_finetuned_model_2024,
  author = {Your Name},
  title = {malli_finetuned_model: Fine-tuned IMDB Sentiment Analysis},
  year = {2024},
  publisher = {Hugging Face},
  howpublished = {\url{https://huggingface.co/Mallikarjunareddy/malli_finetuned_model}}
}
```