File size: 15,568 Bytes
f62250f
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space (Tuple)\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Uses the CombinedExtractor\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f60193c3e50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f60193c7200>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681119844542880369, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAhUPWPp+9Br2Eggg/hUPWPp+9Br2Eggg/hUPWPp+9Br2Eggg/hUPWPp+9Br2Eggg/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAQAbjPhWL6D0ROo0/klRQv6wrlj/+IHo+bFBGv+2hyb9r3sk/d67QP+Yp2D9nNVu/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACFQ9Y+n70GvYSCCD8kPQs8Njpou06q7buFQ9Y+n70GvYSCCD8kPQs8Njpou06q7buFQ9Y+n70GvYSCCD8kPQs8Njpou06q7buFQ9Y+n70GvYSCCD8kPQs8Njpou06q7buUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.41848388 -0.03289568  0.5332415 ]\n [ 0.41848388 -0.03289568  0.5332415 ]\n [ 0.41848388 -0.03289568  0.5332415 ]\n [ 0.41848388 -0.03289568  0.5332415 ]]", "desired_goal": "[[ 0.44340706  0.11354653  1.1033345 ]\n [-0.81379044  1.1732078   0.24426648]\n [-0.77466464 -1.5752541   1.5771002 ]\n [ 1.6303242   1.6887786  -0.8562836 ]]", "observation": "[[ 0.41848388 -0.03289568  0.5332415   0.00849846 -0.00354351 -0.00725297]\n [ 0.41848388 -0.03289568  0.5332415   0.00849846 -0.00354351 -0.00725297]\n [ 0.41848388 -0.03289568  0.5332415   0.00849846 -0.00354351 -0.00725297]\n [ 0.41848388 -0.03289568  0.5332415   0.00849846 -0.00354351 -0.00725297]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA7emaPUeGNz2lkG4+7XdsPeFmG71G4M49mxcFPVB5ob3XPoY9iFuhPXr7hbxY1lo+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]]", "desired_goal": "[[ 0.07564149  0.04480579  0.23297365]\n [ 0.05773156 -0.03793991  0.10101371]\n [ 0.03249322 -0.07884467  0.06554954]\n [ 0.07878786 -0.01635526  0.21370828]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMISgwCK4cW5r+UhpRSlIwBbJRLMowBdJRHQKfpmL876pJ1fZQoaAZoCWgPQwiKk/sdigLdv5SGlFKUaBVLMmgWR0Cn6Px+8XendX2UKGgGaAloD0MI++k/a3585L+UhpRSlGgVSzJoFkdAp+hOlANXo3V9lChoBmgJaA9DCBMoYhHDjuG/lIaUUpRoFUsyaBZHQKfoE72+PBB1fZQoaAZoCWgPQwjbw14oYDvVv5SGlFKUaBVLMmgWR0Cn6wkQ5FPSdX2UKGgGaAloD0MIC5krg2qD2b+UhpRSlGgVSzJoFkdAp+psFlkH2XV9lChoBmgJaA9DCL2NzY5U39e/lIaUUpRoFUsyaBZHQKfpvR+jM3Z1fZQoaAZoCWgPQwgEHEKVmj3gv5SGlFKUaBVLMmgWR0Cn6YE/0NBodX2UKGgGaAloD0MIdJoF2h1S2b+UhpRSlGgVSzJoFkdAp+wnhESdv3V9lChoBmgJaA9DCLEYda29T82/lIaUUpRoFUsyaBZHQKfrin+AEuB1fZQoaAZoCWgPQwjf3jXoS2/Pv5SGlFKUaBVLMmgWR0Cn6tt+so2GdX2UKGgGaAloD0MI38Mlx53S3b+UhpRSlGgVSzJoFkdAp+qfkxREW3V9lChoBmgJaA9DCEBrfvylReW/lIaUUpRoFUsyaBZHQKftTcgQpWp1fZQoaAZoCWgPQwgY7fFCOjzMv5SGlFKUaBVLMmgWR0Cn7LC35N48dX2UKGgGaAloD0MIPzVeukkM1r+UhpRSlGgVSzJoFkdAp+wBxPwd83V9lChoBmgJaA9DCMDN4sXCENO/lIaUUpRoFUsyaBZHQKfrxdfsu4B1fZQoaAZoCWgPQwhWEANd+wLpv5SGlFKUaBVLMmgWR0Cn7mPexfOVdX2UKGgGaAloD0MIZd6q61DN4b+UhpRSlGgVSzJoFkdAp+3G1pj+aXV9lChoBmgJaA9DCCOkbmdfedi/lIaUUpRoFUsyaBZHQKftF96Tnq51fZQoaAZoCWgPQwjcniCx3T3Uv5SGlFKUaBVLMmgWR0Cn7NvuG9HudX2UKGgGaAloD0MIQ6m9iLZj7r+UhpRSlGgVSzJoFkdAp++pckdFOXV9lChoBmgJaA9DCPDce7jkuNO/lIaUUpRoFUsyaBZHQKfvDFgDzRR1fZQoaAZoCWgPQwjl0viFV5Lev5SGlFKUaBVLMmgWR0Cn7l1hLGrCdX2UKGgGaAloD0MIvRjKiXYV0L+UhpRSlGgVSzJoFkdAp+4hXZGrj3V9lChoBmgJaA9DCI0LB0KygOy/lIaUUpRoFUsyaBZHQKfwvHLidat1fZQoaAZoCWgPQwink2x1OSXWv5SGlFKUaBVLMmgWR0Cn8B9qcmShdX2UKGgGaAloD0MIqYQn9PoT6L+UhpRSlGgVSzJoFkdAp+9wkPczqXV9lChoBmgJaA9DCMCw/Pm2YNe/lIaUUpRoFUsyaBZHQKfvNKA8Swp1fZQoaAZoCWgPQwh2MjhKXp3Rv5SGlFKUaBVLMmgWR0Cn8dW12JSBdX2UKGgGaAloD0MIFhVxOslW4b+UhpRSlGgVSzJoFkdAp/E4qiGnGnV9lChoBmgJaA9DCOo9ldOeEuC/lIaUUpRoFUsyaBZHQKfwictGus91fZQoaAZoCWgPQwj+KOrMPaTiv5SGlFKUaBVLMmgWR0Cn8E3Q2MsIdX2UKGgGaAloD0MIameY2lIH3b+UhpRSlGgVSzJoFkdAp/LuQ+2VmnV9lChoBmgJaA9DCPVk/tE3adS/lIaUUpRoFUsyaBZHQKfyUTINmUZ1fZQoaAZoCWgPQwgbYye8BKfmv5SGlFKUaBVLMmgWR0Cn8aIv8IiUdX2UKGgGaAloD0MIMxXikXh5zL+UhpRSlGgVSzJoFkdAp/FmKjzqbHV9lChoBmgJaA9DCO1kcJS8uuW/lIaUUpRoFUsyaBZHQKf0EgFotcx1fZQoaAZoCWgPQwh6AIv8+iHZv5SGlFKUaBVLMmgWR0Cn83UBnzxxdX2UKGgGaAloD0MIpz/7kSIy0r+UhpRSlGgVSzJoFkdAp/LGC9RJmXV9lChoBmgJaA9DCFq9w+3QsNe/lIaUUpRoFUsyaBZHQKfyihSLqD91fZQoaAZoCWgPQwhuFFlrKLXFv5SGlFKUaBVLMmgWR0Cn9SywGGEgdX2UKGgGaAloD0MIGr/wSpLn07+UhpRSlGgVSzJoFkdAp/SPoHLRr3V9lChoBmgJaA9DCP/pBgq8k9u/lIaUUpRoFUsyaBZHQKfz4JeE7GN1fZQoaAZoCWgPQwi0OGOYE7Tsv5SGlFKUaBVLMmgWR0Cn86Tot+TedX2UKGgGaAloD0MILh1znrEv3L+UhpRSlGgVSzJoFkdAp/ZH2GqPwXV9lChoBmgJaA9DCJynOuRmOO+/lIaUUpRoFUsyaBZHQKf1qso2GZh1fZQoaAZoCWgPQwgAV7JjI5Div5SGlFKUaBVLMmgWR0Cn9PvFWGRFdX2UKGgGaAloD0MIXRlUG5wI4b+UhpRSlGgVSzJoFkdAp/S/9Nvfj3V9lChoBmgJaA9DCOHQWzy8Z+m/lIaUUpRoFUsyaBZHQKf3ZFuNxVB1fZQoaAZoCWgPQwjP3EPC937hv5SGlFKUaBVLMmgWR0Cn9sdCE6DHdX2UKGgGaAloD0MIMbWlDvJ617+UhpRSlGgVSzJoFkdAp/YYQvpQlHV9lChoBmgJaA9DCCi4WFGDaeW/lIaUUpRoFUsyaBZHQKf13EkSmIl1fZQoaAZoCWgPQwiiC+pb5vTlv5SGlFKUaBVLMmgWR0Cn+KOIyj59dX2UKGgGaAloD0MIsyjsouiB2b+UhpRSlGgVSzJoFkdAp/gGnO0LMXV9lChoBmgJaA9DCLLZkeo7P+C/lIaUUpRoFUsyaBZHQKf3V6OYIB11fZQoaAZoCWgPQwhlNPJ5xVPRv5SGlFKUaBVLMmgWR0Cn9xvCEYfodX2UKGgGaAloD0MIol7waU7e47+UhpRSlGgVSzJoFkdAp/nEHryDqXV9lChoBmgJaA9DCIHptG6D2ty/lIaUUpRoFUsyaBZHQKf5JxkupS91fZQoaAZoCWgPQwi/gF64c2HWv5SGlFKUaBVLMmgWR0Cn+HhAWznidX2UKGgGaAloD0MIiqw1lNqL17+UhpRSlGgVSzJoFkdAp/g8TFl05nV9lChoBmgJaA9DCAQ91LZhFNe/lIaUUpRoFUsyaBZHQKf62/Zdv891fZQoaAZoCWgPQwgsYthhTPrYv5SGlFKUaBVLMmgWR0Cn+j7aRISUdX2UKGgGaAloD0MIuynltRI65b+UhpRSlGgVSzJoFkdAp/mP3UQTVXV9lChoBmgJaA9DCII65dGNsOa/lIaUUpRoFUsyaBZHQKf5U+/QBxR1fZQoaAZoCWgPQwifW+hKBKrTv5SGlFKUaBVLMmgWR0Cn/AUYbbUPdX2UKGgGaAloD0MIml33ViQm3r+UhpRSlGgVSzJoFkdAp/toIIF/x3V9lChoBmgJaA9DCL+CNGPRdOC/lIaUUpRoFUsyaBZHQKf6uT+vQnh1fZQoaAZoCWgPQwgaogp/hjfUv5SGlFKUaBVLMmgWR0Cn+n1fmcOLdX2UKGgGaAloD0MIpIy4ADRK3L+UhpRSlGgVSzJoFkdAp/0kedTYNHV9lChoBmgJaA9DCBUDJJpAkem/lIaUUpRoFUsyaBZHQKf8h2FnIyV1fZQoaAZoCWgPQwhgkV8/xAbev5SGlFKUaBVLMmgWR0Cn+9hqj8DTdX2UKGgGaAloD0MIvXK9baZC1L+UhpRSlGgVSzJoFkdAp/uchxHXmXV9lChoBmgJaA9DCLN4sTBETtO/lIaUUpRoFUsyaBZHQKf+QeMAFPl1fZQoaAZoCWgPQwg0+PvFbMnVv5SGlFKUaBVLMmgWR0Cn/aTQVsUJdX2UKGgGaAloD0MIWvJ4Wn7g2L+UhpRSlGgVSzJoFkdAp/z12LYPG3V9lChoBmgJaA9DCN3NUx1ys+O/lIaUUpRoFUsyaBZHQKf8ueeWfK91fZQoaAZoCWgPQwgnFCLgEKrlv5SGlFKUaBVLMmgWR0Cn/+4hllK9dX2UKGgGaAloD0MI3IE65dGN27+UhpRSlGgVSzJoFkdAp/9R1A7gbnV9lChoBmgJaA9DCJLsEWqGVOO/lIaUUpRoFUsyaBZHQKf+o4gA6uJ1fZQoaAZoCWgPQwid2a7QB0vqv5SGlFKUaBVLMmgWR0Cn/mh5HEuQdX2UKGgGaAloD0MIGhTNA1jk17+UhpRSlGgVSzJoFkdAqAHzEk0JnnV9lChoBmgJaA9DCCdKQiJt4+G/lIaUUpRoFUsyaBZHQKgBVqv/zat1fZQoaAZoCWgPQwhgAyLElbPev5SGlFKUaBVLMmgWR0CoAKiY1He8dX2UKGgGaAloD0MIPDCA8KFE5b+UhpRSlGgVSzJoFkdAqABuj7ALzHV9lChoBmgJaA9DCAu2EU92M+G/lIaUUpRoFUsyaBZHQKgDzrAxi5N1fZQoaAZoCWgPQwgG1QYnol/ov5SGlFKUaBVLMmgWR0CoAzKqfe1sdX2UKGgGaAloD0MI7G0zFeKR1b+UhpRSlGgVSzJoFkdAqAKE34sVcnV9lChoBmgJaA9DCHB87ZklAdq/lIaUUpRoFUsyaBZHQKgCSg4ffXR1fZQoaAZoCWgPQwih15/E587ov5SGlFKUaBVLMmgWR0CoBbrN4Z/DdX2UKGgGaAloD0MIQiJt409U3L+UhpRSlGgVSzJoFkdAqAUemLtNSXV9lChoBmgJaA9DCJmDoKNVLeW/lIaUUpRoFUsyaBZHQKgEcIRAbAF1fZQoaAZoCWgPQwi9GMqJdhXjv5SGlFKUaBVLMmgWR0CoBDVSn+AFdX2UKGgGaAloD0MIgJ9x4UBI07+UhpRSlGgVSzJoFkdAqAeflZHNHHV9lChoBmgJaA9DCCBB8WPMXdq/lIaUUpRoFUsyaBZHQKgHA4e9zwN1fZQoaAZoCWgPQwi4BrZKsDjlv5SGlFKUaBVLMmgWR0CoBlWqT8pDdX2UKGgGaAloD0MI+13Ymq281r+UhpRSlGgVSzJoFkdAqAYaltTDO3V9lChoBmgJaA9DCJZem42VGOi/lIaUUpRoFUsyaBZHQKgJGJ9iMHd1fZQoaAZoCWgPQwgEjZlEveDiv5SGlFKUaBVLMmgWR0CoCHt/e+EidX2UKGgGaAloD0MIFCAKZkzB1b+UhpRSlGgVSzJoFkdAqAfMaQ3gk3V9lChoBmgJaA9DCC+GcqJdBeG/lIaUUpRoFUsyaBZHQKgHkHJLdvd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True  True  True]", "bounded_above": "[ True  True  True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}