π§ MedGEMMA Summarizer Model β CXR Clinical Reasoning β Impression
This model is a fine-tuned version of google/medgemma-4b-it
trained to summarise step-by-step radiological reasoning into concise radiology impressions.
π©Ί Use Case
Given a structured or natural language clinical reasoning (e.g., output from a vision-language reasoning model), this summarizer produces a final radiological impression suitable for downstream clinical applications.
π Training Data
This model was fine-tuned on 10k step-wise annotated samples from the Manusinhh/cxr-10k-reasoning-dataset
, derived from the MIMIC-CXR dataset.
Each sample includes:
reasoning
: Step-wise explanation of radiological featuresimpression
: Final concise report summary
π Inference Example
messages = [
{
"role": "user",
"content": [
{
"type": "text",
"text": f"Summarise the following clinical reasoning into a concise radiology impression:\n\n{reasoning_text}"
}
]
}
]
formatted_text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
inputs = processor.tokenizer(formatted_text, return_tensors="pt").to(model.device)
with torch.no_grad():
outputs = model.generate(**inputs, max_new_tokens=100)
generated_tokens = outputs[0][inputs["input_ids"].shape[1]:]
summary_output = processor.tokenizer.decode(generated_tokens, skip_special_tokens=True)
π Citation
Please cite the original MIMIC-CXR dataset authors:
Johnson AE, Pollard TJ, Berkowitz SJ, et al. MIMIC-CXR: A de-identified publicly available database of chest radiographs with free-text reports. Scientific Data. 2019;6:317. https://doi.org/10.1038/s41597-019-0322-0
- Downloads last month
- 10