|
--- |
|
license: apache-2.0 |
|
language: |
|
- id |
|
- en |
|
base_model: MoritzLaurer/mDeBERTa-v3-base-mnli-xnli |
|
pipeline_tag: zero-shot-classification |
|
tags: |
|
- mood |
|
- emotion |
|
- indonesian |
|
- nli |
|
metrics: |
|
- accuracy |
|
library_name: transformers |
|
--- |
|
|
|
|
|
# Marfin Emotion Detection Model π΅ |
|
|
|
This model is fine-tuned from `MoritzLaurer/mDeBERTa-v3-base-mnli-xnli` for **emotion detection** tasks based on chat context, specifically optimized for **Indonesian and English**. |
|
|
|
## π Use Case |
|
The model predicts the relationship between user chat input and emotional hypotheses. It helps detect emotions like: |
|
- `senang` (happy) |
|
- `sedih` (sad) |
|
- `marah` (angry) |
|
- `takut` (fear) |
|
- `cinta` (love) |
|
|
|
This is useful for: |
|
- Emotion-based music recommendation |
|
- Sentiment analysis in real-time chat apps |
|
- AI-driven mood detection systems |
|
|
|
## π Training Details |
|
- Base model: mDeBERTa-v3-base-mnli-xnli |
|
- Fine-tuned with custom NLI-style dataset |
|
- Metrics: **Accuracy** |
|
|
|
## π· Tags |
|
`Zero-Shot Classification`, `Emotion`, `Mood`, `Indonesian`, `English` |
|
|
|
## π₯ Example Usage |
|
```python |
|
from transformers import pipeline |
|
|
|
classifier = pipeline("zero-shot-classification", model="MarfinF/marfin_emotion") |
|
|
|
text = "Aku lagi sedih banget hari ini" |
|
labels = ["senang", "sedih", "marah", "takut", "cinta"] |
|
result = classifier(text, candidate_labels=labels) |
|
|
|
print(result) |