Master-Rapha7's picture
Training in progress, epoch 3
bc9e9ef verified
|
raw
history blame
4.63 kB
metadata
library_name: transformers
base_model: google/mobilenet_v2_1.0_224
tags:
  - image-classification
  - vision
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: mobilenetv2-typecoffee
    results: []

mobilenetv2-typecoffee

This model is a fine-tuned version of google/mobilenet_v2_1.0_224 on the Master-Rapha7/TypeCoffee_128x128 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3891
  • Accuracy: 0.8705

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 50.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.0566 1.0 364 1.3442 0.4711
0.7958 2.0 728 0.9054 0.6309
0.7631 3.0 1092 1.8326 0.3444
0.8108 4.0 1456 1.5297 0.5
0.9185 5.0 1820 2.1793 0.4366
0.5972 6.0 2184 0.7575 0.7383
0.5495 7.0 2548 1.5874 0.6006
0.5987 8.0 2912 1.1093 0.6680
0.4262 9.0 3276 0.9131 0.6915
0.5068 10.0 3640 2.0110 0.5937
0.4457 11.0 4004 0.8147 0.7603
0.4789 12.0 4368 0.4532 0.8512
0.5156 13.0 4732 0.6730 0.8058
0.3494 14.0 5096 1.2551 0.6584
0.5386 15.0 5460 1.2512 0.6171
0.3413 16.0 5824 0.8357 0.7383
0.4416 17.0 6188 1.2328 0.6791
0.3827 18.0 6552 0.6589 0.8044
0.3838 19.0 6916 1.0300 0.6983
0.4336 20.0 7280 1.1139 0.7011
0.3418 21.0 7644 0.6383 0.7948
0.4024 22.0 8008 3.2976 0.4421
0.4106 23.0 8372 0.7275 0.7796
0.3289 24.0 8736 2.0388 0.6088
0.5709 25.0 9100 2.2146 0.6391
0.2912 26.0 9464 0.9518 0.7410
0.433 27.0 9828 1.8215 0.6901
0.2391 28.0 10192 0.8574 0.7782
0.2589 29.0 10556 0.7175 0.7824
0.2877 30.0 10920 1.1670 0.7273
0.2391 31.0 11284 0.7039 0.7796
0.3905 32.0 11648 1.0528 0.6928
0.3362 33.0 12012 1.4142 0.7218
0.4056 34.0 12376 0.5757 0.8623
0.2026 35.0 12740 0.8064 0.7769
0.2183 36.0 13104 1.9640 0.5964
0.2996 37.0 13468 1.1046 0.7011
0.1853 38.0 13832 1.2391 0.7369
0.2278 39.0 14196 0.3891 0.8705
0.2415 40.0 14560 0.4691 0.8251
0.2394 41.0 14924 1.4963 0.6736
0.3786 42.0 15288 1.8459 0.6804
0.2873 43.0 15652 2.0178 0.5634
0.2306 44.0 16016 0.7742 0.7603
0.3525 45.0 16380 0.6618 0.8140
0.1891 46.0 16744 1.1009 0.7121
0.2664 47.0 17108 0.8616 0.7562
0.2374 48.0 17472 2.2997 0.4766
0.2761 49.0 17836 1.3257 0.7452
0.2137 50.0 18200 1.0285 0.7507

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0