Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
Paper
•
1908.10084
•
Published
•
12
This is a sentence-transformers model finetuned from Master-thesis-NAP/ModernBert-DAPT-math. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Master-thesis-NAP/ModernBERT-DAPT-Embed-DAPT-Math-v2")
# Run inference
sentences = [
'What is the meaning of the identity containment $1_x:x\\to x$ in the context of the bond system?',
"A \\emph{bond system} is a tuple $(B,C,s,t,1,\\cdot)$, where $B$ is a set of \\emph{bonds}, $C$ is a set of \\emph{content} relations, and $s,t:C\\to B$ are \\emph{source} and \\emph{target} functions. For $c\\in C$ with $s(c)=x$ and $t(c)=y$, we write $x\\xrightarrow{c}y$ or $c:x\\to y$, indicating that $x$ \\emph{contains} $y$. Each bond $x\\in B$ has an \\emph{identity} containment $1_x:x\\to x$, meaning every bond trivially contains itself. For $c:x\\to y$ and $c':y\\to z$, their composition is $cc':x\\to z$. These data must satisfy:\n \\begin{enumerate}\n \\item Identity laws: For each $c:x\\to y$, $1_x c= c=c1_y$\n \\item Associativity: For $c:x\\to y$, $c':y\\to z$, $c'':z\\to w$, $c(c'c'')=(cc')c''$\n \\item Anti-symmetry: For $c:x\\to y$ and $c':y\\to x$, $x=y$\n \\item Left cancellation: For $c,c':x\\to y$ and $c'':y\\to z$, if $cc''=c'c''$, then $c=c'$\n \\end{enumerate}",
'\\label{lem:opt_lin}\nConsider the optimization problem\n\\begin{equation}\\label{eq:max_tr_lem}\n\\begin{aligned}\n \\max_{\\bs{U}}&\\;\\; \\Re\\{\\mrm{tr}(\\bs{U}^\\mrm{H}\\bs{B}) \\}\\\\\n \\mrm{s.t. \\;\\;}& \\bs{U}\\in \\mathcal{U}(N),\n\\end{aligned}\n\\end{equation}\nwhere $\\bs{B}$ may be an arbitrary $N\\times N$ matrix with singular value decomposition (SVD) $\\bs{B}=\\bs{U}_{\\bs{B}}\\bs{S}_{\\bs{B}}\\bs{V}_{\\bs{B}}^\\mrm{H}$. The solution to \\eqref{eq:max_tr_lem} is given by\n\\begin{equation}\\label{eq:sol_max}\n \\bs{U}_\\mrm{opt} = \\bs{U}_{\\bs{B}}^\\mrm{H}\\bs{V}_{\\bs{B}}.\n\\end{equation}\n\\begin{skproof}\n A formal proof, which may be included in the extended version, can be obtained by defining the Riemannian gradient over the unitary group and finding the stationary point where it vanishes. However, an intuitive argument is that the solution to \\eqref{eq:max_tr_lem} is obtained by positively combining the singular values of $\\bs{B}$, leading to \\eqref{eq:sol_max}.\n\\end{skproof}',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
TESTINGInformationRetrievalEvaluator| Metric | Value |
|---|---|
| cosine_accuracy@1 | 0.868 |
| cosine_accuracy@3 | 0.9183 |
| cosine_accuracy@5 | 0.9325 |
| cosine_accuracy@10 | 0.9496 |
| cosine_precision@1 | 0.868 |
| cosine_precision@3 | 0.6119 |
| cosine_precision@5 | 0.4935 |
| cosine_precision@10 | 0.3476 |
| cosine_recall@1 | 0.0419 |
| cosine_recall@3 | 0.0832 |
| cosine_recall@5 | 0.1074 |
| cosine_recall@10 | 0.1421 |
| cosine_ndcg@10 | 0.4493 |
| cosine_mrr@10 | 0.8964 |
| cosine_map@100 | 0.1638 |
anchor and positive| anchor | positive | |
|---|---|---|
| type | string | string |
| details |
|
|
| anchor | positive |
|---|---|
What is the limit of the proportion of 1's in the sequence $a_n$ as $n$ approaches infinity, given that $0 \leq 3g_n -2n \leq 4$? |
Let $g_n$ be the number of $1$'s in the sequence $a_1 a_2 \cdots a_n$. |
Does the statement of \textbf{ThmConjAreTrue} imply that the maximum genus of a locally Cohen-Macaulay curve in $\mathbb{P}^3_{\mathbb{C}}$ of degree $d$ that does not lie on a surface of degree $s-1$ is always equal to $g(d,s)$? |
\label{ThmConjAreTrue} |
\emph{Is the statement \emph{If $X$ is a compact Hausdorff space, then $X$ is normal}, proven in the first isomorphism theorem for topological groups, or is it a well-known result in topology?} |
} |
MultipleNegativesRankingLoss with these parameters:{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
eval_strategy: epochper_device_train_batch_size: 16per_device_eval_batch_size: 16gradient_accumulation_steps: 8learning_rate: 2e-05num_train_epochs: 4lr_scheduler_type: cosinewarmup_ratio: 0.1bf16: Truetf32: Trueload_best_model_at_end: Trueoptim: adamw_torch_fusedbatch_sampler: no_duplicatesoverwrite_output_dir: Falsedo_predict: Falseeval_strategy: epochprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 8eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 2e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 4max_steps: -1lr_scheduler_type: cosinelr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Truefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Truelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Trueignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size: 0fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torch_fusedoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional| Epoch | Step | Training Loss | TESTING_cosine_ndcg@10 |
|---|---|---|---|
| 0.0160 | 10 | 20.2777 | - |
| 0.0320 | 20 | 19.6613 | - |
| 0.0481 | 30 | 18.8588 | - |
| 0.0641 | 40 | 17.5525 | - |
| 0.0801 | 50 | 15.1065 | - |
| 0.0961 | 60 | 10.8128 | - |
| 0.1122 | 70 | 7.0698 | - |
| 0.1282 | 80 | 4.532 | - |
| 0.1442 | 90 | 3.5143 | - |
| 0.1602 | 100 | 2.3256 | - |
| 0.1762 | 110 | 1.4688 | - |
| 0.1923 | 120 | 1.0081 | - |
| 0.2083 | 130 | 0.949 | - |
| 0.2243 | 140 | 0.9709 | - |
| 0.2403 | 150 | 0.8403 | - |
| 0.2564 | 160 | 0.8749 | - |
| 0.2724 | 170 | 0.7955 | - |
| 0.2884 | 180 | 0.6587 | - |
| 0.3044 | 190 | 0.5832 | - |
| 0.3204 | 200 | 0.5376 | - |
| 0.3365 | 210 | 0.608 | - |
| 0.3525 | 220 | 0.4639 | - |
| 0.3685 | 230 | 0.6611 | - |
| 0.3845 | 240 | 0.5589 | - |
| 0.4006 | 250 | 0.5845 | - |
| 0.4166 | 260 | 0.4392 | - |
| 0.4326 | 270 | 0.4746 | - |
| 0.4486 | 280 | 0.4517 | - |
| 0.4647 | 290 | 0.4034 | - |
| 0.4807 | 300 | 0.4437 | - |
| 0.4967 | 310 | 0.4339 | - |
| 0.5127 | 320 | 0.4445 | - |
| 0.5287 | 330 | 0.3793 | - |
| 0.5448 | 340 | 0.3591 | - |
| 0.5608 | 350 | 0.4694 | - |
| 0.5768 | 360 | 0.4668 | - |
| 0.5928 | 370 | 0.4121 | - |
| 0.6089 | 380 | 0.4688 | - |
| 0.6249 | 390 | 0.387 | - |
| 0.6409 | 400 | 0.3748 | - |
| 0.6569 | 410 | 0.2997 | - |
| 0.6729 | 420 | 0.3756 | - |
| 0.6890 | 430 | 0.2993 | - |
| 0.7050 | 440 | 0.3514 | - |
| 0.7210 | 450 | 0.3646 | - |
| 0.7370 | 460 | 0.308 | - |
| 0.7531 | 470 | 0.3612 | - |
| 0.7691 | 480 | 0.2845 | - |
| 0.7851 | 490 | 0.2792 | - |
| 0.8011 | 500 | 0.2204 | - |
| 0.8171 | 510 | 0.2757 | - |
| 0.8332 | 520 | 0.2674 | - |
| 0.8492 | 530 | 0.3753 | - |
| 0.8652 | 540 | 0.3546 | - |
| 0.8812 | 550 | 0.3166 | - |
| 0.8973 | 560 | 0.2656 | - |
| 0.9133 | 570 | 0.3215 | - |
| 0.9293 | 580 | 0.2559 | - |
| 0.9453 | 590 | 0.4629 | - |
| 0.9613 | 600 | 0.31 | - |
| 0.9774 | 610 | 0.3601 | - |
| 0.9934 | 620 | 0.2391 | - |
| 1.0 | 625 | - | 0.4229 |
| 1.0080 | 630 | 0.2507 | - |
| 1.0240 | 640 | 0.1852 | - |
| 1.0401 | 650 | 0.1836 | - |
| 1.0561 | 660 | 0.1487 | - |
| 1.0721 | 670 | 0.1495 | - |
| 1.0881 | 680 | 0.1567 | - |
| 1.1041 | 690 | 0.1497 | - |
| 1.1202 | 700 | 0.1632 | - |
| 1.1362 | 710 | 0.1997 | - |
| 1.1522 | 720 | 0.182 | - |
| 1.1682 | 730 | 0.1884 | - |
| 1.1843 | 740 | 0.1766 | - |
| 1.2003 | 750 | 0.1477 | - |
| 1.2163 | 760 | 0.181 | - |
| 1.2323 | 770 | 0.092 | - |
| 1.2483 | 780 | 0.1506 | - |
| 1.2644 | 790 | 0.1305 | - |
| 1.2804 | 800 | 0.1533 | - |
| 1.2964 | 810 | 0.2306 | - |
| 1.3124 | 820 | 0.1861 | - |
| 1.3285 | 830 | 0.1157 | - |
| 1.3445 | 840 | 0.1054 | - |
| 1.3605 | 850 | 0.1696 | - |
| 1.3765 | 860 | 0.1327 | - |
| 1.3925 | 870 | 0.1485 | - |
| 1.4086 | 880 | 0.1395 | - |
| 1.4246 | 890 | 0.1021 | - |
| 1.4406 | 900 | 0.1283 | - |
| 1.4566 | 910 | 0.102 | - |
| 1.4727 | 920 | 0.1825 | - |
| 1.4887 | 930 | 0.1395 | - |
| 1.5047 | 940 | 0.157 | - |
| 1.5207 | 950 | 0.1444 | - |
| 1.5368 | 960 | 0.1317 | - |
| 1.5528 | 970 | 0.146 | - |
| 1.5688 | 980 | 0.1809 | - |
| 1.5848 | 990 | 0.1368 | - |
| 1.6008 | 1000 | 0.2036 | - |
| 1.6169 | 1010 | 0.1292 | - |
| 1.6329 | 1020 | 0.1306 | - |
| 1.6489 | 1030 | 0.1473 | - |
| 1.6649 | 1040 | 0.1595 | - |
| 1.6810 | 1050 | 0.1471 | - |
| 1.6970 | 1060 | 0.1869 | - |
| 1.7130 | 1070 | 0.1445 | - |
| 1.7290 | 1080 | 0.157 | - |
| 1.7450 | 1090 | 0.1382 | - |
| 1.7611 | 1100 | 0.157 | - |
| 1.7771 | 1110 | 0.1073 | - |
| 1.7931 | 1120 | 0.0864 | - |
| 1.8091 | 1130 | 0.1312 | - |
| 1.8252 | 1140 | 0.1644 | - |
| 1.8412 | 1150 | 0.1366 | - |
| 1.8572 | 1160 | 0.1257 | - |
| 1.8732 | 1170 | 0.127 | - |
| 1.8892 | 1180 | 0.1494 | - |
| 1.9053 | 1190 | 0.1516 | - |
| 1.9213 | 1200 | 0.1709 | - |
| 1.9373 | 1210 | 0.1717 | - |
| 1.9533 | 1220 | 0.1044 | - |
| 1.9694 | 1230 | 0.1551 | - |
| 1.9854 | 1240 | 0.1303 | - |
| 2.0 | 1250 | 0.1081 | 0.4392 |
| 2.0160 | 1260 | 0.0572 | - |
| 2.0320 | 1270 | 0.0504 | - |
| 2.0481 | 1280 | 0.0535 | - |
| 2.0641 | 1290 | 0.0512 | - |
| 2.0801 | 1300 | 0.0539 | - |
| 2.0961 | 1310 | 0.0462 | - |
| 2.1122 | 1320 | 0.0611 | - |
| 2.1282 | 1330 | 0.0989 | - |
| 2.1442 | 1340 | 0.0462 | - |
| 2.1602 | 1350 | 0.061 | - |
| 2.1762 | 1360 | 0.0557 | - |
| 2.1923 | 1370 | 0.0622 | - |
| 2.2083 | 1380 | 0.0744 | - |
| 2.2243 | 1390 | 0.0531 | - |
| 2.2403 | 1400 | 0.0507 | - |
| 2.2564 | 1410 | 0.0533 | - |
| 2.2724 | 1420 | 0.0676 | - |
| 2.2884 | 1430 | 0.0706 | - |
| 2.3044 | 1440 | 0.0452 | - |
| 2.3204 | 1450 | 0.0415 | - |
| 2.3365 | 1460 | 0.0562 | - |
| 2.3525 | 1470 | 0.0487 | - |
| 2.3685 | 1480 | 0.0614 | - |
| 2.3845 | 1490 | 0.045 | - |
| 2.4006 | 1500 | 0.0529 | - |
| 2.4166 | 1510 | 0.048 | - |
| 2.4326 | 1520 | 0.059 | - |
| 2.4486 | 1530 | 0.0593 | - |
| 2.4647 | 1540 | 0.0631 | - |
| 2.4807 | 1550 | 0.0506 | - |
| 2.4967 | 1560 | 0.058 | - |
| 2.5127 | 1570 | 0.0896 | - |
| 2.5287 | 1580 | 0.0522 | - |
| 2.5448 | 1590 | 0.035 | - |
| 2.5608 | 1600 | 0.0677 | - |
| 2.5768 | 1610 | 0.0538 | - |
| 2.5928 | 1620 | 0.0485 | - |
| 2.6089 | 1630 | 0.0575 | - |
| 2.6249 | 1640 | 0.0571 | - |
| 2.6409 | 1650 | 0.0761 | - |
| 2.6569 | 1660 | 0.0582 | - |
| 2.6729 | 1670 | 0.0366 | - |
| 2.6890 | 1680 | 0.0445 | - |
| 2.7050 | 1690 | 0.0519 | - |
| 2.7210 | 1700 | 0.0506 | - |
| 2.7370 | 1710 | 0.0637 | - |
| 2.7531 | 1720 | 0.0618 | - |
| 2.7691 | 1730 | 0.0433 | - |
| 2.7851 | 1740 | 0.0503 | - |
| 2.8011 | 1750 | 0.0541 | - |
| 2.8171 | 1760 | 0.0443 | - |
| 2.8332 | 1770 | 0.0634 | - |
| 2.8492 | 1780 | 0.0586 | - |
| 2.8652 | 1790 | 0.0497 | - |
| 2.8812 | 1800 | 0.0444 | - |
| 2.8973 | 1810 | 0.0397 | - |
| 2.9133 | 1820 | 0.0483 | - |
| 2.9293 | 1830 | 0.0441 | - |
| 2.9453 | 1840 | 0.0758 | - |
| 2.9613 | 1850 | 0.0988 | - |
| 2.9774 | 1860 | 0.0566 | - |
| 2.9934 | 1870 | 0.0497 | - |
| 3.0 | 1875 | - | 0.4466 |
| 3.0080 | 1880 | 0.0388 | - |
| 3.0240 | 1890 | 0.0278 | - |
| 3.0401 | 1900 | 0.0231 | - |
| 3.0561 | 1910 | 0.0482 | - |
| 3.0721 | 1920 | 0.0416 | - |
| 3.0881 | 1930 | 0.052 | - |
| 3.1041 | 1940 | 0.0403 | - |
| 3.1202 | 1950 | 0.0384 | - |
| 3.1362 | 1960 | 0.0288 | - |
| 3.1522 | 1970 | 0.0368 | - |
| 3.1682 | 1980 | 0.0301 | - |
| 3.1843 | 1990 | 0.029 | - |
| 3.2003 | 2000 | 0.0332 | - |
| 3.2163 | 2010 | 0.0307 | - |
| 3.2323 | 2020 | 0.0502 | - |
| 3.2483 | 2030 | 0.0474 | - |
| 3.2644 | 2040 | 0.0383 | - |
| 3.2804 | 2050 | 0.0392 | - |
| 3.2964 | 2060 | 0.0308 | - |
| 3.3124 | 2070 | 0.0479 | - |
| 3.3285 | 2080 | 0.0448 | - |
| 3.3445 | 2090 | 0.0478 | - |
| 3.3605 | 2100 | 0.0249 | - |
| 3.3765 | 2110 | 0.03 | - |
| 3.3925 | 2120 | 0.0284 | - |
| 3.4086 | 2130 | 0.0323 | - |
| 3.4246 | 2140 | 0.0379 | - |
| 3.4406 | 2150 | 0.0221 | - |
| 3.4566 | 2160 | 0.0354 | - |
| 3.4727 | 2170 | 0.0332 | - |
| 3.4887 | 2180 | 0.0287 | - |
| 3.5047 | 2190 | 0.0382 | - |
| 3.5207 | 2200 | 0.0342 | - |
| 3.5368 | 2210 | 0.0381 | - |
| 3.5528 | 2220 | 0.056 | - |
| 3.5688 | 2230 | 0.0426 | - |
| 3.5848 | 2240 | 0.0465 | - |
| 3.6008 | 2250 | 0.0372 | - |
| 3.6169 | 2260 | 0.0345 | - |
| 3.6329 | 2270 | 0.0459 | - |
| 3.6489 | 2280 | 0.0368 | - |
| 3.6649 | 2290 | 0.0349 | - |
| 3.6810 | 2300 | 0.059 | - |
| 3.6970 | 2310 | 0.0275 | - |
| 3.7130 | 2320 | 0.0305 | - |
| 3.7290 | 2330 | 0.0406 | - |
| 3.7450 | 2340 | 0.0456 | - |
| 3.7611 | 2350 | 0.0311 | - |
| 3.7771 | 2360 | 0.0428 | - |
| 3.7931 | 2370 | 0.0308 | - |
| 3.8091 | 2380 | 0.0345 | - |
| 3.8252 | 2390 | 0.0378 | - |
| 3.8412 | 2400 | 0.0322 | - |
| 3.8572 | 2410 | 0.0236 | - |
| 3.8732 | 2420 | 0.0383 | - |
| 3.8892 | 2430 | 0.0295 | - |
| 3.9053 | 2440 | 0.0273 | - |
| 3.9213 | 2450 | 0.0286 | - |
| 3.9373 | 2460 | 0.0366 | - |
| 3.9533 | 2470 | 0.0285 | - |
| 3.9694 | 2480 | 0.0335 | - |
| 3.9854 | 2490 | 0.0278 | - |
| 3.995 | 2496 | - | 0.4493 |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Base model
Master-thesis-NAP/ModernBert-DAPT-math