ModernBERT DAPT Embed DAPT Math
This is a sentence-transformers model finetuned from answerdotai/ModernBERT-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: answerdotai/ModernBERT-base
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Master-thesis-NAP/ModernBERT-base-finetuned")
# Run inference
sentences = [
'What is the meaning of the identity containment $1_x:x\\to x$ in the context of the bond system?',
"A \\emph{bond system} is a tuple $(B,C,s,t,1,\\cdot)$, where $B$ is a set of \\emph{bonds}, $C$ is a set of \\emph{content} relations, and $s,t:C\\to B$ are \\emph{source} and \\emph{target} functions. For $c\\in C$ with $s(c)=x$ and $t(c)=y$, we write $x\\xrightarrow{c}y$ or $c:x\\to y$, indicating that $x$ \\emph{contains} $y$. Each bond $x\\in B$ has an \\emph{identity} containment $1_x:x\\to x$, meaning every bond trivially contains itself. For $c:x\\to y$ and $c':y\\to z$, their composition is $cc':x\\to z$. These data must satisfy:\n \\begin{enumerate}\n \\item Identity laws: For each $c:x\\to y$, $1_x c= c=c1_y$\n \\item Associativity: For $c:x\\to y$, $c':y\\to z$, $c'':z\\to w$, $c(c'c'')=(cc')c''$\n \\item Anti-symmetry: For $c:x\\to y$ and $c':y\\to x$, $x=y$\n \\item Left cancellation: For $c,c':x\\to y$ and $c'':y\\to z$, if $cc''=c'c''$, then $c=c'$\n \\end{enumerate}",
'\\label{lem:opt_lin}\nConsider the optimization problem\n\\begin{equation}\\label{eq:max_tr_lem}\n\\begin{aligned}\n \\max_{\\bs{U}}&\\;\\; \\Re\\{\\mrm{tr}(\\bs{U}^\\mrm{H}\\bs{B}) \\}\\\\\n \\mrm{s.t. \\;\\;}& \\bs{U}\\in \\mathcal{U}(N),\n\\end{aligned}\n\\end{equation}\nwhere $\\bs{B}$ may be an arbitrary $N\\times N$ matrix with singular value decomposition (SVD) $\\bs{B}=\\bs{U}_{\\bs{B}}\\bs{S}_{\\bs{B}}\\bs{V}_{\\bs{B}}^\\mrm{H}$. The solution to \\eqref{eq:max_tr_lem} is given by\n\\begin{equation}\\label{eq:sol_max}\n \\bs{U}_\\mrm{opt} = \\bs{U}_{\\bs{B}}^\\mrm{H}\\bs{V}_{\\bs{B}}.\n\\end{equation}\n\\begin{skproof}\n A formal proof, which may be included in the extended version, can be obtained by defining the Riemannian gradient over the unitary group and finding the stationary point where it vanishes. However, an intuitive argument is that the solution to \\eqref{eq:max_tr_lem} is obtained by positively combining the singular values of $\\bs{B}$, leading to \\eqref{eq:sol_max}.\n\\end{skproof}',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
TESTING
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.8649 |
cosine_accuracy@3 | 0.9143 |
cosine_accuracy@5 | 0.9287 |
cosine_accuracy@10 | 0.9458 |
cosine_precision@1 | 0.8649 |
cosine_precision@3 | 0.6053 |
cosine_precision@5 | 0.4861 |
cosine_precision@10 | 0.3406 |
cosine_recall@1 | 0.0418 |
cosine_recall@3 | 0.0822 |
cosine_recall@5 | 0.1057 |
cosine_recall@10 | 0.1394 |
cosine_ndcg@10 | 0.4427 |
cosine_mrr@10 | 0.8928 |
cosine_map@100 | 0.1599 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 79,876 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 9 tokens
- mean: 38.48 tokens
- max: 142 tokens
- min: 5 tokens
- mean: 210.43 tokens
- max: 924 tokens
- Samples:
anchor positive What is the limit of the proportion of 1's in the sequence $a_n$ as $n$ approaches infinity, given that $0 \leq 3g_n -2n \leq 4$?
Let $g_n$ be the number of $1$'s in the sequence $a_1 a_2 \cdots a_n$.
Then
\begin{equation}
0 \leq 3g_n -2n \leq 4
\label{star}
\end{equation}
for all $n$, and hence
$\lim_{n \rightarrow \infty} g_n/n = 2/3$.
\label{thm1}Does the statement of \textbf{ThmConjAreTrue} imply that the maximum genus of a locally Cohen-Macaulay curve in $\mathbb{P}^3_{\mathbb{C}}$ of degree $d$ that does not lie on a surface of degree $s-1$ is always equal to $g(d,s)$?
\label{ThmConjAreTrue}
Conjectures \ref{Conj1} and \ref{Conj2} are true.
As a consequence,
if either $d=s \geq 1$ or $d \geq 2s+1 \geq 3$,
the maximum genus of a locally Cohen-Macaulay curve in $\mathbb{P}^3_{\mathbb{C}}$ of degree $d$ that does not lie on a surface of degree $s-1$ is equal to $g(d,s)$.\emph{Is the statement \emph{If $X$ is a compact Hausdorff space, then $X$ is normal}, proven in the first isomorphism theorem for topological groups, or is it a well-known result in topology?}
}
\newcommand{\ep}{ - Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 16per_device_eval_batch_size
: 16gradient_accumulation_steps
: 8learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 8eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Truelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | TESTING_cosine_ndcg@10 |
---|---|---|---|
0.0160 | 10 | 20.3071 | - |
0.0320 | 20 | 19.7465 | - |
0.0481 | 30 | 19.0342 | - |
0.0641 | 40 | 17.755 | - |
0.0801 | 50 | 14.9942 | - |
0.0961 | 60 | 10.9013 | - |
0.1122 | 70 | 7.043 | - |
0.1282 | 80 | 4.5936 | - |
0.1442 | 90 | 3.5183 | - |
0.1602 | 100 | 2.3748 | - |
0.1762 | 110 | 1.5711 | - |
0.1923 | 120 | 1.1523 | - |
0.2083 | 130 | 1.0827 | - |
0.2243 | 140 | 1.0009 | - |
0.2403 | 150 | 0.9493 | - |
0.2564 | 160 | 0.9231 | - |
0.2724 | 170 | 0.9511 | - |
0.2884 | 180 | 0.7963 | - |
0.3044 | 190 | 0.6874 | - |
0.3204 | 200 | 0.6039 | - |
0.3365 | 210 | 0.6957 | - |
0.3525 | 220 | 0.5578 | - |
0.3685 | 230 | 0.7451 | - |
0.3845 | 240 | 0.6107 | - |
0.4006 | 250 | 0.644 | - |
0.4166 | 260 | 0.4977 | - |
0.4326 | 270 | 0.5744 | - |
0.4486 | 280 | 0.5136 | - |
0.4647 | 290 | 0.4888 | - |
0.4807 | 300 | 0.4784 | - |
0.4967 | 310 | 0.475 | - |
0.5127 | 320 | 0.4976 | - |
0.5287 | 330 | 0.415 | - |
0.5448 | 340 | 0.415 | - |
0.5608 | 350 | 0.492 | - |
0.5768 | 360 | 0.5054 | - |
0.5928 | 370 | 0.4836 | - |
0.6089 | 380 | 0.4985 | - |
0.6249 | 390 | 0.4503 | - |
0.6409 | 400 | 0.3757 | - |
0.6569 | 410 | 0.3236 | - |
0.6729 | 420 | 0.403 | - |
0.6890 | 430 | 0.3306 | - |
0.7050 | 440 | 0.4443 | - |
0.7210 | 450 | 0.3631 | - |
0.7370 | 460 | 0.3318 | - |
0.7531 | 470 | 0.3811 | - |
0.7691 | 480 | 0.3179 | - |
0.7851 | 490 | 0.3291 | - |
0.8011 | 500 | 0.264 | - |
0.8171 | 510 | 0.3179 | - |
0.8332 | 520 | 0.2381 | - |
0.8492 | 530 | 0.4066 | - |
0.8652 | 540 | 0.3693 | - |
0.8812 | 550 | 0.329 | - |
0.8973 | 560 | 0.3047 | - |
0.9133 | 570 | 0.3337 | - |
0.9293 | 580 | 0.285 | - |
0.9453 | 590 | 0.4788 | - |
0.9613 | 600 | 0.3036 | - |
0.9774 | 610 | 0.366 | - |
0.9934 | 620 | 0.2561 | - |
1.0 | 625 | - | 0.4194 |
1.0080 | 630 | 0.3096 | - |
1.0240 | 640 | 0.2129 | - |
1.0401 | 650 | 0.1873 | - |
1.0561 | 660 | 0.1672 | - |
1.0721 | 670 | 0.1529 | - |
1.0881 | 680 | 0.1929 | - |
1.1041 | 690 | 0.156 | - |
1.1202 | 700 | 0.2057 | - |
1.1362 | 710 | 0.1691 | - |
1.1522 | 720 | 0.1902 | - |
1.1682 | 730 | 0.2281 | - |
1.1843 | 740 | 0.1805 | - |
1.2003 | 750 | 0.1673 | - |
1.2163 | 760 | 0.2152 | - |
1.2323 | 770 | 0.1149 | - |
1.2483 | 780 | 0.1583 | - |
1.2644 | 790 | 0.1441 | - |
1.2804 | 800 | 0.1711 | - |
1.2964 | 810 | 0.2311 | - |
1.3124 | 820 | 0.2057 | - |
1.3285 | 830 | 0.1312 | - |
1.3445 | 840 | 0.1055 | - |
1.3605 | 850 | 0.1858 | - |
1.3765 | 860 | 0.1483 | - |
1.3925 | 870 | 0.1335 | - |
1.4086 | 880 | 0.1716 | - |
1.4246 | 890 | 0.1133 | - |
1.4406 | 900 | 0.126 | - |
1.4566 | 910 | 0.1402 | - |
1.4727 | 920 | 0.1974 | - |
1.4887 | 930 | 0.1582 | - |
1.5047 | 940 | 0.1771 | - |
1.5207 | 950 | 0.1583 | - |
1.5368 | 960 | 0.1219 | - |
1.5528 | 970 | 0.1388 | - |
1.5688 | 980 | 0.196 | - |
1.5848 | 990 | 0.1474 | - |
1.6008 | 1000 | 0.2324 | - |
1.6169 | 1010 | 0.1499 | - |
1.6329 | 1020 | 0.1359 | - |
1.6489 | 1030 | 0.1597 | - |
1.6649 | 1040 | 0.1636 | - |
1.6810 | 1050 | 0.1395 | - |
1.6970 | 1060 | 0.187 | - |
1.7130 | 1070 | 0.1424 | - |
1.7290 | 1080 | 0.1971 | - |
1.7450 | 1090 | 0.139 | - |
1.7611 | 1100 | 0.184 | - |
1.7771 | 1110 | 0.1212 | - |
1.7931 | 1120 | 0.1127 | - |
1.8091 | 1130 | 0.1308 | - |
1.8252 | 1140 | 0.1648 | - |
1.8412 | 1150 | 0.1225 | - |
1.8572 | 1160 | 0.1262 | - |
1.8732 | 1170 | 0.1247 | - |
1.8892 | 1180 | 0.1462 | - |
1.9053 | 1190 | 0.1529 | - |
1.9213 | 1200 | 0.1835 | - |
1.9373 | 1210 | 0.1672 | - |
1.9533 | 1220 | 0.1245 | - |
1.9694 | 1230 | 0.172 | - |
1.9854 | 1240 | 0.1443 | - |
2.0 | 1250 | 0.1285 | 0.4340 |
2.0160 | 1260 | 0.0587 | - |
2.0320 | 1270 | 0.0631 | - |
2.0481 | 1280 | 0.069 | - |
2.0641 | 1290 | 0.0685 | - |
2.0801 | 1300 | 0.062 | - |
2.0961 | 1310 | 0.0505 | - |
2.1122 | 1320 | 0.0757 | - |
2.1282 | 1330 | 0.1258 | - |
2.1442 | 1340 | 0.0549 | - |
2.1602 | 1350 | 0.0625 | - |
2.1762 | 1360 | 0.0568 | - |
2.1923 | 1370 | 0.0664 | - |
2.2083 | 1380 | 0.0759 | - |
2.2243 | 1390 | 0.0608 | - |
2.2403 | 1400 | 0.0519 | - |
2.2564 | 1410 | 0.0818 | - |
2.2724 | 1420 | 0.0722 | - |
2.2884 | 1430 | 0.0791 | - |
2.3044 | 1440 | 0.0575 | - |
2.3204 | 1450 | 0.0456 | - |
2.3365 | 1460 | 0.0564 | - |
2.3525 | 1470 | 0.0574 | - |
2.3685 | 1480 | 0.0675 | - |
2.3845 | 1490 | 0.0525 | - |
2.4006 | 1500 | 0.0517 | - |
2.4166 | 1510 | 0.0492 | - |
2.4326 | 1520 | 0.0535 | - |
2.4486 | 1530 | 0.0602 | - |
2.4647 | 1540 | 0.0598 | - |
2.4807 | 1550 | 0.0497 | - |
2.4967 | 1560 | 0.0603 | - |
2.5127 | 1570 | 0.0932 | - |
2.5287 | 1580 | 0.0559 | - |
2.5448 | 1590 | 0.0403 | - |
2.5608 | 1600 | 0.0764 | - |
2.5768 | 1610 | 0.0558 | - |
2.5928 | 1620 | 0.0691 | - |
2.6089 | 1630 | 0.0602 | - |
2.6249 | 1640 | 0.0795 | - |
2.6409 | 1650 | 0.0846 | - |
2.6569 | 1660 | 0.0582 | - |
2.6729 | 1670 | 0.0413 | - |
2.6890 | 1680 | 0.062 | - |
2.7050 | 1690 | 0.0697 | - |
2.7210 | 1700 | 0.0655 | - |
2.7370 | 1710 | 0.0647 | - |
2.7531 | 1720 | 0.0591 | - |
2.7691 | 1730 | 0.045 | - |
2.7851 | 1740 | 0.0666 | - |
2.8011 | 1750 | 0.0532 | - |
2.8171 | 1760 | 0.0455 | - |
2.8332 | 1770 | 0.0603 | - |
2.8492 | 1780 | 0.0893 | - |
2.8652 | 1790 | 0.0498 | - |
2.8812 | 1800 | 0.053 | - |
2.8973 | 1810 | 0.0481 | - |
2.9133 | 1820 | 0.0556 | - |
2.9293 | 1830 | 0.0643 | - |
2.9453 | 1840 | 0.0825 | - |
2.9613 | 1850 | 0.1111 | - |
2.9774 | 1860 | 0.0655 | - |
2.9934 | 1870 | 0.0432 | - |
3.0 | 1875 | - | 0.4412 |
3.0080 | 1880 | 0.0502 | - |
3.0240 | 1890 | 0.0269 | - |
3.0401 | 1900 | 0.0277 | - |
3.0561 | 1910 | 0.0535 | - |
3.0721 | 1920 | 0.0465 | - |
3.0881 | 1930 | 0.0548 | - |
3.1041 | 1940 | 0.0498 | - |
3.1202 | 1950 | 0.0394 | - |
3.1362 | 1960 | 0.0286 | - |
3.1522 | 1970 | 0.0434 | - |
3.1682 | 1980 | 0.0316 | - |
3.1843 | 1990 | 0.0346 | - |
3.2003 | 2000 | 0.0402 | - |
3.2163 | 2010 | 0.0368 | - |
3.2323 | 2020 | 0.0501 | - |
3.2483 | 2030 | 0.061 | - |
3.2644 | 2040 | 0.0445 | - |
3.2804 | 2050 | 0.0381 | - |
3.2964 | 2060 | 0.0367 | - |
3.3124 | 2070 | 0.0485 | - |
3.3285 | 2080 | 0.0567 | - |
3.3445 | 2090 | 0.0512 | - |
3.3605 | 2100 | 0.0329 | - |
3.3765 | 2110 | 0.0442 | - |
3.3925 | 2120 | 0.032 | - |
3.4086 | 2130 | 0.0387 | - |
3.4246 | 2140 | 0.0397 | - |
3.4406 | 2150 | 0.0258 | - |
3.4566 | 2160 | 0.039 | - |
3.4727 | 2170 | 0.0432 | - |
3.4887 | 2180 | 0.0382 | - |
3.5047 | 2190 | 0.0467 | - |
3.5207 | 2200 | 0.0334 | - |
3.5368 | 2210 | 0.0365 | - |
3.5528 | 2220 | 0.0553 | - |
3.5688 | 2230 | 0.0483 | - |
3.5848 | 2240 | 0.0456 | - |
3.6008 | 2250 | 0.0397 | - |
3.6169 | 2260 | 0.037 | - |
3.6329 | 2270 | 0.0414 | - |
3.6489 | 2280 | 0.0431 | - |
3.6649 | 2290 | 0.0416 | - |
3.6810 | 2300 | 0.0532 | - |
3.6970 | 2310 | 0.0304 | - |
3.7130 | 2320 | 0.0376 | - |
3.7290 | 2330 | 0.0417 | - |
3.7450 | 2340 | 0.0519 | - |
3.7611 | 2350 | 0.0371 | - |
3.7771 | 2360 | 0.0481 | - |
3.7931 | 2370 | 0.0374 | - |
3.8091 | 2380 | 0.0322 | - |
3.8252 | 2390 | 0.0493 | - |
3.8412 | 2400 | 0.0337 | - |
3.8572 | 2410 | 0.0288 | - |
3.8732 | 2420 | 0.0383 | - |
3.8892 | 2430 | 0.0341 | - |
3.9053 | 2440 | 0.028 | - |
3.9213 | 2450 | 0.0328 | - |
3.9373 | 2460 | 0.0403 | - |
3.9533 | 2470 | 0.0366 | - |
3.9694 | 2480 | 0.0322 | - |
3.9854 | 2490 | 0.0288 | - |
4.0 | 2500 | 0.0423 | 0.4427 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.12
- Sentence Transformers: 4.1.0
- Transformers: 4.52.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 2.14.4
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 7
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for Master-thesis-NAP/ModernBERT-base-finetuned
Base model
answerdotai/ModernBERT-baseEvaluation results
- Cosine Accuracy@1 on TESTINGself-reported0.865
- Cosine Accuracy@3 on TESTINGself-reported0.914
- Cosine Accuracy@5 on TESTINGself-reported0.929
- Cosine Accuracy@10 on TESTINGself-reported0.946
- Cosine Precision@1 on TESTINGself-reported0.865
- Cosine Precision@3 on TESTINGself-reported0.605
- Cosine Precision@5 on TESTINGself-reported0.486
- Cosine Precision@10 on TESTINGself-reported0.341
- Cosine Recall@1 on TESTINGself-reported0.042
- Cosine Recall@3 on TESTINGself-reported0.082