spa-eng-pos-tagging-v5

This model is a fine-tuned version of distilbert-base-multilingual-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3191
  • Accuracy: 0.9175
  • Precision: 0.9166
  • Recall: 0.8431
  • F1: 0.8483
  • Hamming Loss: 0.0825

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 12

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Hamming Loss
1.0059 1.0 1744 0.8050 0.7117 0.7074 0.6280 0.6300 0.2883
0.6286 2.0 3488 0.5338 0.8024 0.8121 0.7148 0.7270 0.1976
0.4449 3.0 5232 0.4519 0.8435 0.8300 0.7747 0.7700 0.1565
0.3647 4.0 6976 0.3849 0.8618 0.8551 0.7900 0.7907 0.1382
0.2968 5.0 8720 0.3579 0.8772 0.8769 0.8053 0.8088 0.1228
0.255 6.0 10464 0.3298 0.8868 0.8756 0.8179 0.8152 0.1132
0.2025 7.0 12208 0.3245 0.8941 0.8917 0.8224 0.8251 0.1059
0.176 8.0 13952 0.3324 0.8980 0.8970 0.8260 0.8293 0.1020
0.1399 9.0 15696 0.3376 0.9038 0.9019 0.8280 0.8331 0.0962
0.1198 10.0 17440 0.3251 0.9108 0.9075 0.8379 0.8412 0.0892
0.0973 11.0 19184 0.3191 0.9175 0.9166 0.8431 0.8483 0.0825
0.0763 12.0 20928 0.3262 0.9192 0.9166 0.8464 0.8501 0.0808

Framework versions

  • Transformers 4.32.0
  • Pytorch 2.0.1+cu118
  • Tokenizers 0.13.3
Downloads last month
4
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for MateiCv/spa-eng-pos-tagging-v5

Finetuned
(233)
this model