classifier-7b-v9 / README.md
Max Zabarka
Mon Oct 23 18:38:13 UTC 2023
363d479
metadata
base_model: NousResearch/Llama-2-7b-hf
tags:
  - generated_from_trainer
model-index:
  - name: classifier-7b-v9
    results: []

Built with Axolotl

classifier-7b-v9

This model is a fine-tuned version of NousResearch/Llama-2-7b-hf on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8197

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
2.171 0.02 20 2.1160
1.881 0.04 40 1.9814
2.0141 0.06 60 1.9357
1.9386 0.08 80 1.9156
1.9899 0.1 100 1.9032
1.9022 0.11 120 1.8964
1.9176 0.13 140 1.8880
1.9431 0.15 160 1.8827
1.8847 0.17 180 1.8772
1.8158 0.19 200 1.8740
1.851 0.21 220 1.8711
1.8173 0.23 240 1.8678
1.7902 0.25 260 1.8639
1.8507 0.27 280 1.8600
1.8749 0.29 300 1.8582
1.9203 0.3 320 1.8543
1.8876 0.32 340 1.8518
1.8918 0.34 360 1.8510
1.9568 0.36 380 1.8482
1.7887 0.38 400 1.8489
1.9188 0.4 420 1.8451
1.855 0.42 440 1.8434
1.94 0.44 460 1.8421
1.7969 0.46 480 1.8399
1.875 0.48 500 1.8384
1.8493 0.5 520 1.8383
1.8048 0.51 540 1.8370
1.9077 0.53 560 1.8352
1.804 0.55 580 1.8327
1.8623 0.57 600 1.8315
1.8156 0.59 620 1.8312
1.8639 0.61 640 1.8306
1.909 0.63 660 1.8292
1.8636 0.65 680 1.8290
1.7888 0.67 700 1.8270
1.7797 0.69 720 1.8259
1.8014 0.7 740 1.8248
1.7313 0.72 760 1.8240
1.8429 0.74 780 1.8235
1.814 0.76 800 1.8235
1.7861 0.78 820 1.8221
1.8515 0.8 840 1.8212
1.8432 0.82 860 1.8209
1.8018 0.84 880 1.8204
1.864 0.86 900 1.8203
1.7234 0.88 920 1.8201
1.84 0.89 940 1.8198
1.8721 0.91 960 1.8199
1.7822 0.93 980 1.8198
1.8464 0.95 1000 1.8197
1.7454 0.97 1020 1.8197
1.7434 0.99 1040 1.8197

Framework versions

  • Transformers 4.34.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.1