|
--- |
|
library_name: stable-baselines3 |
|
tags: |
|
- PandaPickAndPlace-v3 |
|
- deep-reinforcement-learning |
|
- reinforcement-learning |
|
- stable-baselines3 |
|
model-index: |
|
- name: A2C |
|
results: |
|
- task: |
|
type: reinforcement-learning |
|
name: reinforcement-learning |
|
dataset: |
|
name: PandaPickAndPlace-v3 |
|
type: PandaPickAndPlace-v3 |
|
metrics: |
|
- type: mean_reward |
|
value: -50.00 +/- 0.00 |
|
name: mean_reward |
|
verified: false |
|
--- |
|
|
|
# **A2C** Agent playing **PandaPickAndPlace-v3** |
|
This is a trained model of a **A2C** agent playing **PandaPickAndPlace-v3** |
|
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). |
|
|
|
## Usage (with Stable-baselines3) |
|
TODO: Add your code |
|
|
|
|
|
```python |
|
|
|
%%capture |
|
!apt install python-opengl |
|
!apt install ffmpeg |
|
!apt install xvfb |
|
!pip3 install pyvirtualdisplay |
|
|
|
|
|
from pyvirtualdisplay import Display |
|
|
|
virtual_display = Display(visible=0, size=(1400, 900)) |
|
virtual_display.start() |
|
|
|
!pip install stable-baselines3[extra] |
|
!pip install gymnasium |
|
!pip install huggingface_sb3 |
|
!pip install huggingface_hub |
|
!pip install panda_gym |
|
|
|
import os |
|
|
|
import gymnasium as gym |
|
import panda_gym |
|
from stable_baselines3 import A2C |
|
from stable_baselines3.common.evaluation import evaluate_policy |
|
from stable_baselines3.common.vec_env import DummyVecEnv, VecNormalize |
|
from stable_baselines3.common.env_util import make_vec_env |
|
|
|
env_id = "PandaPickAndPlace-v3" |
|
|
|
env = gym.make(env_id) |
|
env = make_vec_env(env_id, n_envs=4) |
|
env = VecNormalize(env, clip_obs = 10) |
|
model = A2C("MultiInputPolicy", env, verbose=1) |
|
model.learn(1_000_000) |
|
|
|
model.save("a2c-PandaPickAndPlace-v3") |
|
env.save("vec_normalize.pkl") |
|
|
|
|
|
from stable_baselines3.common.vec_env import DummyVecEnv, VecNormalize |
|
|
|
# Load the saved statistics |
|
eval_env = DummyVecEnv([lambda: gym.make("PandaPickAndPlace-v3")]) |
|
eval_env = VecNormalize.load("vec_normalize.pkl", eval_env) |
|
|
|
# We need to override the render_mode |
|
eval_env.render_mode = "rgb_array" |
|
|
|
# do not update them at test time |
|
eval_env.training = False |
|
# reward normalization is not needed at test time |
|
eval_env.norm_reward = False |
|
|
|
# Load the agent |
|
model = A2C.load("a2c-PandaPickAndPlace-v3") |
|
|
|
mean_reward, std_reward = evaluate_policy(model, eval_env) |
|
|
|
print(f"Mean reward = {mean_reward:.2f} +/- {std_reward:.2f}") |
|
... |
|
``` |
|
|