vit-msn-small-lateral_flow_ivalidation_green

This model is a fine-tuned version of facebook/vit-msn-small on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2917
  • Accuracy: 0.9602

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.9231 6 0.5034 0.9239
0.704 2.0 13 0.4524 0.9410
0.704 2.9231 19 0.2633 0.9594
0.505 4.0 26 0.4748 0.8092
0.4456 4.9231 32 0.2917 0.9602
0.4456 6.0 39 0.2621 0.9222
0.3908 6.9231 45 0.4519 0.8191
0.3628 8.0 52 0.4093 0.8623
0.3628 8.9231 58 0.2705 0.9354
0.372 10.0 65 0.4137 0.8546
0.36 10.9231 71 0.3493 0.8815
0.36 12.0 78 0.2190 0.9457
0.36 12.9231 84 0.3190 0.9033
0.3363 14.0 91 0.3380 0.8948
0.3363 14.9231 97 0.3342 0.8982
0.327 16.0 104 0.4212 0.8328
0.3257 16.9231 110 0.5167 0.7844
0.3257 18.0 117 0.5848 0.7275
0.3175 18.9231 123 0.4091 0.8336
0.3377 20.0 130 0.2838 0.9162
0.3377 20.9231 136 0.6106 0.7263
0.3129 22.0 143 0.6295 0.7164
0.3129 22.9231 149 0.7898 0.5932
0.3138 24.0 156 0.9408 0.4846
0.3106 24.9231 162 0.3485 0.8832
0.3106 26.0 169 0.5201 0.7866
0.3157 26.9231 175 0.7210 0.6672
0.2896 28.0 182 0.7981 0.6330
0.2896 28.9231 188 0.7667 0.6429
0.2867 30.0 195 0.7687 0.6544
0.2786 30.9231 201 1.1714 0.5210
0.2786 32.0 208 1.1744 0.4273
0.2823 32.9231 214 0.9260 0.5445
0.2864 34.0 221 0.7140 0.6920
0.2864 34.9231 227 0.6098 0.7331
0.2707 36.0 234 0.6993 0.6784
0.2921 36.9231 240 0.8719 0.6176
0.2921 38.0 247 0.8337 0.6061
0.2849 38.9231 253 0.4396 0.8255
0.2657 40.0 260 1.0982 0.5017
0.2657 40.9231 266 1.0934 0.5175
0.2659 42.0 273 0.8629 0.6369
0.2659 42.9231 279 1.4602 0.4140
0.2645 44.0 286 1.9095 0.3422
0.2424 44.9231 292 1.2180 0.4397
0.2424 46.0 299 0.7686 0.6424
0.2495 46.9231 305 0.9899 0.5796
0.2454 48.0 312 1.0291 0.5535
0.2454 48.9231 318 0.7534 0.6822
0.2473 50.0 325 0.6591 0.7092
0.2716 50.9231 331 0.5840 0.7455
0.2716 52.0 338 1.2430 0.4765
0.234 52.9231 344 1.2993 0.5145
0.2482 54.0 351 0.6042 0.7173
0.2482 54.9231 357 0.8892 0.6027
0.2339 56.0 364 1.8546 0.3161
0.2461 56.9231 370 1.0859 0.5359
0.2461 58.0 377 0.8690 0.6176
0.2395 58.9231 383 0.7557 0.6694
0.2159 60.0 390 1.0534 0.5701
0.2159 60.9231 396 0.9856 0.5813
0.2309 62.0 403 1.0000 0.5500
0.2309 62.9231 409 1.1940 0.5180
0.2117 64.0 416 1.1581 0.5154
0.2307 64.9231 422 0.9987 0.5338
0.2307 66.0 429 1.0850 0.5415
0.2068 66.9231 435 0.9428 0.6014
0.2126 68.0 442 1.2380 0.5115
0.2126 68.9231 448 0.9993 0.5860
0.2176 70.0 455 1.1910 0.5021
0.2096 70.9231 461 1.2468 0.5120
0.2096 72.0 468 0.7588 0.6920
0.2092 72.9231 474 0.9003 0.6309
0.1968 74.0 481 1.1697 0.5646
0.1968 74.9231 487 0.8789 0.6446
0.2027 76.0 494 1.1352 0.5599
0.1965 76.9231 500 1.0836 0.5599
0.1965 78.0 507 1.0188 0.5902
0.2267 78.9231 513 1.0287 0.5975
0.1967 80.0 520 0.8465 0.6544
0.1967 80.9231 526 1.1881 0.5470
0.1842 82.0 533 1.2352 0.5368
0.1842 82.9231 539 1.1064 0.5701
0.1952 84.0 546 0.8088 0.6608
0.1873 84.9231 552 0.9342 0.6086
0.1873 86.0 559 0.9807 0.6056
0.185 86.9231 565 1.0165 0.5898
0.1993 88.0 572 1.1511 0.5475
0.1993 88.9231 578 1.1766 0.5406
0.1707 90.0 585 1.1201 0.5663
0.1852 90.9231 591 1.1162 0.5701
0.1852 92.0 598 1.1273 0.5680
0.1904 92.3077 600 1.1280 0.5680

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.19.1
Downloads last month
1
Safetensors
Model size
21.7M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Melo1512/vit-msn-small-lateral_flow_ivalidation_green

Finetuned
(27)
this model

Evaluation results