vit-msn-small-lateral_flow_ivalidation_green
This model is a fine-tuned version of facebook/vit-msn-small on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.2917
- Accuracy: 0.9602
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0.9231 | 6 | 0.5034 | 0.9239 |
0.704 | 2.0 | 13 | 0.4524 | 0.9410 |
0.704 | 2.9231 | 19 | 0.2633 | 0.9594 |
0.505 | 4.0 | 26 | 0.4748 | 0.8092 |
0.4456 | 4.9231 | 32 | 0.2917 | 0.9602 |
0.4456 | 6.0 | 39 | 0.2621 | 0.9222 |
0.3908 | 6.9231 | 45 | 0.4519 | 0.8191 |
0.3628 | 8.0 | 52 | 0.4093 | 0.8623 |
0.3628 | 8.9231 | 58 | 0.2705 | 0.9354 |
0.372 | 10.0 | 65 | 0.4137 | 0.8546 |
0.36 | 10.9231 | 71 | 0.3493 | 0.8815 |
0.36 | 12.0 | 78 | 0.2190 | 0.9457 |
0.36 | 12.9231 | 84 | 0.3190 | 0.9033 |
0.3363 | 14.0 | 91 | 0.3380 | 0.8948 |
0.3363 | 14.9231 | 97 | 0.3342 | 0.8982 |
0.327 | 16.0 | 104 | 0.4212 | 0.8328 |
0.3257 | 16.9231 | 110 | 0.5167 | 0.7844 |
0.3257 | 18.0 | 117 | 0.5848 | 0.7275 |
0.3175 | 18.9231 | 123 | 0.4091 | 0.8336 |
0.3377 | 20.0 | 130 | 0.2838 | 0.9162 |
0.3377 | 20.9231 | 136 | 0.6106 | 0.7263 |
0.3129 | 22.0 | 143 | 0.6295 | 0.7164 |
0.3129 | 22.9231 | 149 | 0.7898 | 0.5932 |
0.3138 | 24.0 | 156 | 0.9408 | 0.4846 |
0.3106 | 24.9231 | 162 | 0.3485 | 0.8832 |
0.3106 | 26.0 | 169 | 0.5201 | 0.7866 |
0.3157 | 26.9231 | 175 | 0.7210 | 0.6672 |
0.2896 | 28.0 | 182 | 0.7981 | 0.6330 |
0.2896 | 28.9231 | 188 | 0.7667 | 0.6429 |
0.2867 | 30.0 | 195 | 0.7687 | 0.6544 |
0.2786 | 30.9231 | 201 | 1.1714 | 0.5210 |
0.2786 | 32.0 | 208 | 1.1744 | 0.4273 |
0.2823 | 32.9231 | 214 | 0.9260 | 0.5445 |
0.2864 | 34.0 | 221 | 0.7140 | 0.6920 |
0.2864 | 34.9231 | 227 | 0.6098 | 0.7331 |
0.2707 | 36.0 | 234 | 0.6993 | 0.6784 |
0.2921 | 36.9231 | 240 | 0.8719 | 0.6176 |
0.2921 | 38.0 | 247 | 0.8337 | 0.6061 |
0.2849 | 38.9231 | 253 | 0.4396 | 0.8255 |
0.2657 | 40.0 | 260 | 1.0982 | 0.5017 |
0.2657 | 40.9231 | 266 | 1.0934 | 0.5175 |
0.2659 | 42.0 | 273 | 0.8629 | 0.6369 |
0.2659 | 42.9231 | 279 | 1.4602 | 0.4140 |
0.2645 | 44.0 | 286 | 1.9095 | 0.3422 |
0.2424 | 44.9231 | 292 | 1.2180 | 0.4397 |
0.2424 | 46.0 | 299 | 0.7686 | 0.6424 |
0.2495 | 46.9231 | 305 | 0.9899 | 0.5796 |
0.2454 | 48.0 | 312 | 1.0291 | 0.5535 |
0.2454 | 48.9231 | 318 | 0.7534 | 0.6822 |
0.2473 | 50.0 | 325 | 0.6591 | 0.7092 |
0.2716 | 50.9231 | 331 | 0.5840 | 0.7455 |
0.2716 | 52.0 | 338 | 1.2430 | 0.4765 |
0.234 | 52.9231 | 344 | 1.2993 | 0.5145 |
0.2482 | 54.0 | 351 | 0.6042 | 0.7173 |
0.2482 | 54.9231 | 357 | 0.8892 | 0.6027 |
0.2339 | 56.0 | 364 | 1.8546 | 0.3161 |
0.2461 | 56.9231 | 370 | 1.0859 | 0.5359 |
0.2461 | 58.0 | 377 | 0.8690 | 0.6176 |
0.2395 | 58.9231 | 383 | 0.7557 | 0.6694 |
0.2159 | 60.0 | 390 | 1.0534 | 0.5701 |
0.2159 | 60.9231 | 396 | 0.9856 | 0.5813 |
0.2309 | 62.0 | 403 | 1.0000 | 0.5500 |
0.2309 | 62.9231 | 409 | 1.1940 | 0.5180 |
0.2117 | 64.0 | 416 | 1.1581 | 0.5154 |
0.2307 | 64.9231 | 422 | 0.9987 | 0.5338 |
0.2307 | 66.0 | 429 | 1.0850 | 0.5415 |
0.2068 | 66.9231 | 435 | 0.9428 | 0.6014 |
0.2126 | 68.0 | 442 | 1.2380 | 0.5115 |
0.2126 | 68.9231 | 448 | 0.9993 | 0.5860 |
0.2176 | 70.0 | 455 | 1.1910 | 0.5021 |
0.2096 | 70.9231 | 461 | 1.2468 | 0.5120 |
0.2096 | 72.0 | 468 | 0.7588 | 0.6920 |
0.2092 | 72.9231 | 474 | 0.9003 | 0.6309 |
0.1968 | 74.0 | 481 | 1.1697 | 0.5646 |
0.1968 | 74.9231 | 487 | 0.8789 | 0.6446 |
0.2027 | 76.0 | 494 | 1.1352 | 0.5599 |
0.1965 | 76.9231 | 500 | 1.0836 | 0.5599 |
0.1965 | 78.0 | 507 | 1.0188 | 0.5902 |
0.2267 | 78.9231 | 513 | 1.0287 | 0.5975 |
0.1967 | 80.0 | 520 | 0.8465 | 0.6544 |
0.1967 | 80.9231 | 526 | 1.1881 | 0.5470 |
0.1842 | 82.0 | 533 | 1.2352 | 0.5368 |
0.1842 | 82.9231 | 539 | 1.1064 | 0.5701 |
0.1952 | 84.0 | 546 | 0.8088 | 0.6608 |
0.1873 | 84.9231 | 552 | 0.9342 | 0.6086 |
0.1873 | 86.0 | 559 | 0.9807 | 0.6056 |
0.185 | 86.9231 | 565 | 1.0165 | 0.5898 |
0.1993 | 88.0 | 572 | 1.1511 | 0.5475 |
0.1993 | 88.9231 | 578 | 1.1766 | 0.5406 |
0.1707 | 90.0 | 585 | 1.1201 | 0.5663 |
0.1852 | 90.9231 | 591 | 1.1162 | 0.5701 |
0.1852 | 92.0 | 598 | 1.1273 | 0.5680 |
0.1904 | 92.3077 | 600 | 1.1280 | 0.5680 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.2.0
- Tokenizers 0.19.1
- Downloads last month
- 1
Model tree for Melo1512/vit-msn-small-lateral_flow_ivalidation_green
Base model
facebook/vit-msn-smallEvaluation results
- Accuracy on imagefoldervalidation set self-reported0.960