Melo1512's picture
Model save
e1d3ac7 verified
|
raw
history blame
5.49 kB
metadata
library_name: transformers
license: apache-2.0
base_model: facebook/vit-msn-small
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: vit-msn-small-wbc-blur-detector
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9456521739130435

vit-msn-small-wbc-blur-detector

This model is a fine-tuned version of facebook/vit-msn-small on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3181
  • Accuracy: 0.9457

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 60

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 3 0.6142 0.6304
No log 2.0 6 0.3853 0.8696
No log 3.0 9 0.4070 0.8261
0.494 4.0 12 0.1461 0.9348
0.494 5.0 15 0.1189 0.9565
0.494 6.0 18 0.1527 0.9457
0.2024 7.0 21 0.3323 0.9022
0.2024 8.0 24 0.1520 0.9457
0.2024 9.0 27 0.1572 0.9457
0.1419 10.0 30 0.1814 0.9348
0.1419 11.0 33 0.1778 0.9348
0.1419 12.0 36 0.1505 0.9348
0.1419 13.0 39 0.1891 0.9457
0.1053 14.0 42 0.7274 0.7935
0.1053 15.0 45 0.2669 0.9348
0.1053 16.0 48 0.2240 0.9348
0.3044 17.0 51 0.3497 0.8913
0.3044 18.0 54 0.2208 0.9348
0.3044 19.0 57 0.1733 0.9565
0.151 20.0 60 0.2038 0.9239
0.151 21.0 63 0.1282 0.9565
0.151 22.0 66 0.3231 0.9239
0.151 23.0 69 0.1565 0.9565
0.0875 24.0 72 0.1981 0.9457
0.0875 25.0 75 0.1974 0.9457
0.0875 26.0 78 0.2045 0.9457
0.0851 27.0 81 0.1841 0.9457
0.0851 28.0 84 0.2061 0.9565
0.0851 29.0 87 0.2077 0.9457
0.046 30.0 90 0.2199 0.9565
0.046 31.0 93 0.2038 0.9565
0.046 32.0 96 0.2077 0.9457
0.046 33.0 99 0.1877 0.9565
0.0533 34.0 102 0.2383 0.9348
0.0533 35.0 105 0.2571 0.9239
0.0533 36.0 108 0.2330 0.9565
0.0451 37.0 111 0.2420 0.9457
0.0451 38.0 114 0.2882 0.9239
0.0451 39.0 117 0.2386 0.9457
0.0401 40.0 120 0.2513 0.9348
0.0401 41.0 123 0.2672 0.9348
0.0401 42.0 126 0.2950 0.9457
0.0401 43.0 129 0.3232 0.9457
0.0329 44.0 132 0.3712 0.9239
0.0329 45.0 135 0.3529 0.9348
0.0329 46.0 138 0.2905 0.9457
0.0519 47.0 141 0.2670 0.9457
0.0519 48.0 144 0.2629 0.9457
0.0519 49.0 147 0.2761 0.9457
0.0281 50.0 150 0.3040 0.9457
0.0281 51.0 153 0.3191 0.9457
0.0281 52.0 156 0.3214 0.9457
0.0281 53.0 159 0.3132 0.9457
0.028 54.0 162 0.3115 0.9457
0.028 55.0 165 0.3116 0.9565
0.028 56.0 168 0.3225 0.9457
0.0361 57.0 171 0.3235 0.9457
0.0361 58.0 174 0.3200 0.9457
0.0361 59.0 177 0.3183 0.9457
0.0312 60.0 180 0.3181 0.9457

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.19.1