v2_articles_single_large
This model is a fine-tuned version of xlm-roberta-large on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 2.6526
- Accuracy: 0.3857
- F1: 0.4087
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 80
- eval_batch_size: 80
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 160
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 35
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
9.8049 | 0.2548 | 500 | 9.7696 | 0.0063 | 0.0004 |
9.5184 | 0.5097 | 1000 | 9.4548 | 0.0066 | 0.0002 |
9.0248 | 0.7645 | 1500 | 8.9444 | 0.0129 | 0.0025 |
8.5347 | 1.0194 | 2000 | 8.4306 | 0.0376 | 0.0116 |
8.0234 | 1.2742 | 2500 | 7.9427 | 0.0627 | 0.0229 |
7.639 | 1.5291 | 3000 | 7.4403 | 0.1047 | 0.0508 |
7.1271 | 1.7839 | 3500 | 6.9189 | 0.1357 | 0.0742 |
6.5748 | 2.0387 | 4000 | 6.3963 | 0.1605 | 0.0913 |
6.0621 | 2.2936 | 4500 | 5.8880 | 0.1784 | 0.1095 |
5.619 | 2.5484 | 5000 | 5.4470 | 0.1974 | 0.1264 |
5.2332 | 2.8033 | 5500 | 5.0557 | 0.2173 | 0.1512 |
4.7992 | 3.0581 | 6000 | 4.7030 | 0.2367 | 0.1737 |
4.5462 | 3.3129 | 6500 | 4.3994 | 0.2553 | 0.1979 |
4.2021 | 3.5678 | 7000 | 4.1254 | 0.2764 | 0.2226 |
3.9076 | 3.8226 | 7500 | 3.9074 | 0.2927 | 0.2426 |
3.7324 | 4.0775 | 8000 | 3.7108 | 0.3038 | 0.2575 |
3.4882 | 4.3323 | 8500 | 3.5696 | 0.3128 | 0.2731 |
3.3832 | 4.5872 | 9000 | 3.4306 | 0.3258 | 0.2932 |
3.2845 | 4.8420 | 9500 | 3.3197 | 0.3325 | 0.3035 |
3.035 | 5.0968 | 10000 | 3.2309 | 0.3369 | 0.3098 |
2.9903 | 5.3517 | 10500 | 3.1371 | 0.3440 | 0.3290 |
2.8294 | 5.6065 | 11000 | 3.0603 | 0.3517 | 0.3358 |
2.8602 | 5.8614 | 11500 | 2.9908 | 0.3558 | 0.3439 |
2.6384 | 6.1162 | 12000 | 2.9477 | 0.3607 | 0.3529 |
2.6094 | 6.3710 | 12500 | 2.8816 | 0.3653 | 0.3639 |
2.5143 | 6.6259 | 13000 | 2.8460 | 0.3718 | 0.3712 |
2.551 | 6.8807 | 13500 | 2.8101 | 0.3685 | 0.3733 |
2.2979 | 7.1356 | 14000 | 2.7735 | 0.3740 | 0.3804 |
2.3091 | 7.3904 | 14500 | 2.7315 | 0.3786 | 0.3892 |
2.239 | 7.6453 | 15000 | 2.6950 | 0.3812 | 0.3963 |
2.2109 | 7.9001 | 15500 | 2.6699 | 0.3818 | 0.4008 |
2.0498 | 8.1549 | 16000 | 2.6526 | 0.3857 | 0.4087 |
2.0797 | 8.4098 | 16500 | 2.6227 | 0.3902 | 0.4109 |
2.1027 | 8.6646 | 17000 | 2.5972 | 0.3873 | 0.4138 |
2.0108 | 8.9195 | 17500 | 2.5755 | 0.3934 | 0.4209 |
1.8812 | 9.1743 | 18000 | 2.5651 | 0.3935 | 0.4254 |
1.8961 | 9.4292 | 18500 | 2.5421 | 0.3998 | 0.4298 |
1.878 | 9.6840 | 19000 | 2.5359 | 0.4018 | 0.4352 |
1.8077 | 9.9388 | 19500 | 2.5115 | 0.4003 | 0.4362 |
1.7137 | 10.1937 | 20000 | 2.5032 | 0.3987 | 0.4385 |
1.71 | 10.4485 | 20500 | 2.4862 | 0.3995 | 0.4433 |
1.6946 | 10.7034 | 21000 | 2.4861 | 0.4002 | 0.4449 |
1.6815 | 10.9582 | 21500 | 2.4621 | 0.4073 | 0.4506 |
1.5642 | 11.2130 | 22000 | 2.4694 | 0.4061 | 0.4497 |
1.5588 | 11.4679 | 22500 | 2.4468 | 0.4085 | 0.4562 |
1.5367 | 11.7227 | 23000 | 2.4279 | 0.4110 | 0.4606 |
1.5718 | 11.9776 | 23500 | 2.4248 | 0.4106 | 0.4611 |
1.4507 | 12.2324 | 24000 | 2.4332 | 0.4124 | 0.4631 |
1.4353 | 12.4873 | 24500 | 2.4275 | 0.4121 | 0.4629 |
1.4319 | 12.7421 | 25000 | 2.4112 | 0.4156 | 0.4667 |
1.4224 | 12.9969 | 25500 | 2.4023 | 0.4132 | 0.4669 |
1.334 | 13.2518 | 26000 | 2.4074 | 0.4167 | 0.4729 |
1.32 | 13.5066 | 26500 | 2.4021 | 0.4149 | 0.4692 |
1.3201 | 13.7615 | 27000 | 2.3925 | 0.4172 | 0.4724 |
1.2608 | 14.0163 | 27500 | 2.3923 | 0.4230 | 0.4781 |
1.2215 | 14.2712 | 28000 | 2.4127 | 0.4146 | 0.4729 |
1.2394 | 14.5260 | 28500 | 2.3934 | 0.4227 | 0.4798 |
1.2167 | 14.7808 | 29000 | 2.3933 | 0.4216 | 0.4788 |
Framework versions
- Transformers 4.51.0
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 7
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for MercuraTech/v2_articles_single_large
Base model
FacebookAI/xlm-roberta-large