v3_articles_single_base
This model is a fine-tuned version of xlm-roberta-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 2.6527
- Accuracy: 0.4034
- F1: 0.4216
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 30
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
9.9788 | 0.1909 | 500 | 9.9691 | 0.0000 | 0.0000 |
9.8491 | 0.3818 | 1000 | 9.8108 | 0.0064 | 0.0001 |
9.559 | 0.5727 | 1500 | 9.5123 | 0.0064 | 0.0001 |
9.2051 | 0.7637 | 2000 | 9.1544 | 0.0064 | 0.0002 |
8.9159 | 0.9546 | 2500 | 8.8713 | 0.0064 | 0.0002 |
8.6687 | 1.1455 | 3000 | 8.6692 | 0.0124 | 0.0014 |
8.5236 | 1.3364 | 3500 | 8.5122 | 0.0205 | 0.0027 |
8.3933 | 1.5273 | 4000 | 8.3659 | 0.0243 | 0.0048 |
8.2382 | 1.7182 | 4500 | 8.1938 | 0.0290 | 0.0062 |
8.0455 | 1.9091 | 5000 | 7.9894 | 0.0427 | 0.0130 |
7.6723 | 2.1000 | 5500 | 7.7463 | 0.0576 | 0.0180 |
7.4806 | 2.2910 | 6000 | 7.4716 | 0.0756 | 0.0288 |
7.195 | 2.4819 | 6500 | 7.1386 | 0.1029 | 0.0444 |
6.9325 | 2.6728 | 7000 | 6.7902 | 0.1262 | 0.0611 |
6.4846 | 2.8637 | 7500 | 6.4323 | 0.1423 | 0.0724 |
6.0024 | 3.0546 | 8000 | 6.0699 | 0.1601 | 0.0882 |
5.7705 | 3.2455 | 8500 | 5.7652 | 0.1719 | 0.0966 |
5.453 | 3.4364 | 9000 | 5.4848 | 0.1852 | 0.1095 |
5.24 | 3.6273 | 9500 | 5.2315 | 0.1997 | 0.1260 |
5.0462 | 3.8183 | 10000 | 5.0269 | 0.2122 | 0.1342 |
4.8026 | 4.0092 | 10500 | 4.8465 | 0.2201 | 0.1456 |
4.525 | 4.2001 | 11000 | 4.6870 | 0.2301 | 0.1564 |
4.4423 | 4.3910 | 11500 | 4.5442 | 0.2438 | 0.1693 |
4.2558 | 4.5819 | 12000 | 4.4112 | 0.2503 | 0.1779 |
4.138 | 4.7728 | 12500 | 4.2965 | 0.2606 | 0.1874 |
4.094 | 4.9637 | 13000 | 4.1810 | 0.2689 | 0.1987 |
3.8333 | 5.1546 | 13500 | 4.0969 | 0.2746 | 0.2057 |
3.8822 | 5.3456 | 14000 | 4.0132 | 0.2790 | 0.2119 |
3.7825 | 5.5365 | 14500 | 3.9188 | 0.2896 | 0.2238 |
3.5839 | 5.7274 | 15000 | 3.8476 | 0.2955 | 0.2290 |
3.5884 | 5.9183 | 15500 | 3.7643 | 0.3035 | 0.2426 |
3.4725 | 6.1092 | 16000 | 3.6964 | 0.3109 | 0.2506 |
3.4295 | 6.3001 | 16500 | 3.6443 | 0.3138 | 0.2566 |
3.3089 | 6.4910 | 17000 | 3.5774 | 0.3209 | 0.2662 |
3.3234 | 6.6819 | 17500 | 3.5313 | 0.3238 | 0.2669 |
3.2996 | 6.8729 | 18000 | 3.4774 | 0.3304 | 0.2778 |
3.1088 | 7.0638 | 18500 | 3.4367 | 0.3317 | 0.2794 |
3.049 | 7.2547 | 19000 | 3.3922 | 0.3371 | 0.2885 |
3.0197 | 7.4456 | 19500 | 3.3527 | 0.3384 | 0.2912 |
3.0054 | 7.6365 | 20000 | 3.3090 | 0.3444 | 0.2966 |
2.9578 | 7.8274 | 20500 | 3.2725 | 0.3493 | 0.3054 |
2.9004 | 8.0183 | 21000 | 3.2319 | 0.3531 | 0.3111 |
2.79 | 8.2092 | 21500 | 3.1944 | 0.3591 | 0.3220 |
2.7671 | 8.4002 | 22000 | 3.1643 | 0.3583 | 0.3233 |
2.7441 | 8.5911 | 22500 | 3.1439 | 0.3617 | 0.3287 |
2.7601 | 8.7820 | 23000 | 3.1184 | 0.3658 | 0.3289 |
2.7741 | 8.9729 | 23500 | 3.0845 | 0.3651 | 0.3360 |
2.7503 | 9.1638 | 24000 | 3.0580 | 0.3686 | 0.3471 |
2.603 | 9.3547 | 24500 | 3.0327 | 0.3706 | 0.3438 |
2.5722 | 9.5456 | 25000 | 3.0078 | 0.3726 | 0.3496 |
2.5372 | 9.7365 | 25500 | 2.9964 | 0.3757 | 0.3482 |
2.5411 | 9.9275 | 26000 | 2.9608 | 0.3737 | 0.3572 |
2.4594 | 10.1184 | 26500 | 2.9482 | 0.3752 | 0.3590 |
2.4336 | 10.3093 | 27000 | 2.9390 | 0.3783 | 0.3601 |
2.4163 | 10.5002 | 27500 | 2.9005 | 0.3834 | 0.3709 |
2.4297 | 10.6911 | 28000 | 2.8966 | 0.3837 | 0.3658 |
2.4118 | 10.8820 | 28500 | 2.8715 | 0.3843 | 0.3743 |
2.2559 | 11.0729 | 29000 | 2.8604 | 0.3813 | 0.3726 |
2.2856 | 11.2638 | 29500 | 2.8406 | 0.3872 | 0.3818 |
2.3113 | 11.4548 | 30000 | 2.8189 | 0.3866 | 0.3846 |
2.311 | 11.6457 | 30500 | 2.8048 | 0.3911 | 0.3880 |
2.2357 | 11.8366 | 31000 | 2.7862 | 0.3907 | 0.3912 |
2.1633 | 12.0275 | 31500 | 2.7756 | 0.3905 | 0.3929 |
2.1658 | 12.2184 | 32000 | 2.7612 | 0.3917 | 0.3951 |
2.1555 | 12.4093 | 32500 | 2.7593 | 0.3950 | 0.3978 |
2.1318 | 12.6002 | 33000 | 2.7390 | 0.3966 | 0.4021 |
2.1729 | 12.7911 | 33500 | 2.7257 | 0.3940 | 0.4021 |
2.112 | 12.9821 | 34000 | 2.7123 | 0.3956 | 0.4059 |
2.1104 | 13.1730 | 34500 | 2.7084 | 0.3956 | 0.4077 |
2.059 | 13.3639 | 35000 | 2.6962 | 0.3999 | 0.4132 |
2.0413 | 13.5548 | 35500 | 2.6910 | 0.3986 | 0.4100 |
2.0357 | 13.7457 | 36000 | 2.6787 | 0.3990 | 0.4110 |
2.0525 | 13.9366 | 36500 | 2.6616 | 0.4019 | 0.4180 |
1.918 | 14.1275 | 37000 | 2.6545 | 0.3998 | 0.4161 |
1.9494 | 14.3184 | 37500 | 2.6527 | 0.4034 | 0.4216 |
1.9953 | 14.5094 | 38000 | 2.6409 | 0.4029 | 0.4233 |
1.9497 | 14.7003 | 38500 | 2.6393 | 0.4069 | 0.4243 |
1.9438 | 14.8912 | 39000 | 2.6196 | 0.4040 | 0.4273 |
1.8923 | 15.0821 | 39500 | 2.6127 | 0.4074 | 0.4344 |
1.8606 | 15.2730 | 40000 | 2.6162 | 0.4087 | 0.4313 |
1.9162 | 15.4639 | 40500 | 2.6046 | 0.4053 | 0.4326 |
1.8617 | 15.6548 | 41000 | 2.6003 | 0.4089 | 0.4348 |
1.8639 | 15.8457 | 41500 | 2.5879 | 0.4111 | 0.4379 |
1.7972 | 16.0367 | 42000 | 2.5834 | 0.4083 | 0.4392 |
1.762 | 16.2276 | 42500 | 2.5844 | 0.4085 | 0.4381 |
1.777 | 16.4185 | 43000 | 2.5691 | 0.4092 | 0.4433 |
1.8193 | 16.6094 | 43500 | 2.5720 | 0.4094 | 0.4437 |
1.7783 | 16.8003 | 44000 | 2.5529 | 0.4128 | 0.4484 |
1.7733 | 16.9912 | 44500 | 2.5468 | 0.4104 | 0.4490 |
1.7001 | 17.1821 | 45000 | 2.5509 | 0.4093 | 0.4487 |
1.7282 | 17.3730 | 45500 | 2.5500 | 0.4132 | 0.4497 |
1.7175 | 17.5640 | 46000 | 2.5405 | 0.4104 | 0.4498 |
1.7631 | 17.7549 | 46500 | 2.5405 | 0.4127 | 0.4498 |
1.6979 | 17.9458 | 47000 | 2.5342 | 0.4105 | 0.4513 |
1.6255 | 18.1367 | 47500 | 2.5347 | 0.4148 | 0.4526 |
1.65 | 18.3276 | 48000 | 2.5238 | 0.4126 | 0.4536 |
1.6412 | 18.5185 | 48500 | 2.5239 | 0.4143 | 0.4565 |
1.6252 | 18.7094 | 49000 | 2.5211 | 0.4151 | 0.4554 |
1.6629 | 18.9003 | 49500 | 2.5078 | 0.4160 | 0.4607 |
1.5831 | 19.0913 | 50000 | 2.5184 | 0.4143 | 0.4570 |
1.5809 | 19.2822 | 50500 | 2.5014 | 0.4155 | 0.4616 |
1.5816 | 19.4731 | 51000 | 2.5012 | 0.4176 | 0.4634 |
1.5276 | 19.6640 | 51500 | 2.5002 | 0.4180 | 0.4631 |
1.582 | 19.8549 | 52000 | 2.4901 | 0.4161 | 0.4627 |
1.5468 | 20.0458 | 52500 | 2.4929 | 0.4180 | 0.4669 |
1.5483 | 20.2367 | 53000 | 2.4910 | 0.4183 | 0.4667 |
1.5168 | 20.4276 | 53500 | 2.4932 | 0.4161 | 0.4656 |
Framework versions
- Transformers 4.51.2
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 8
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for MercuraTech/v3_articles_single_base
Base model
FacebookAI/xlm-roberta-base