v3_articles_single_base

This model is a fine-tuned version of xlm-roberta-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.6527
  • Accuracy: 0.4034
  • F1: 0.4216

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
9.9788 0.1909 500 9.9691 0.0000 0.0000
9.8491 0.3818 1000 9.8108 0.0064 0.0001
9.559 0.5727 1500 9.5123 0.0064 0.0001
9.2051 0.7637 2000 9.1544 0.0064 0.0002
8.9159 0.9546 2500 8.8713 0.0064 0.0002
8.6687 1.1455 3000 8.6692 0.0124 0.0014
8.5236 1.3364 3500 8.5122 0.0205 0.0027
8.3933 1.5273 4000 8.3659 0.0243 0.0048
8.2382 1.7182 4500 8.1938 0.0290 0.0062
8.0455 1.9091 5000 7.9894 0.0427 0.0130
7.6723 2.1000 5500 7.7463 0.0576 0.0180
7.4806 2.2910 6000 7.4716 0.0756 0.0288
7.195 2.4819 6500 7.1386 0.1029 0.0444
6.9325 2.6728 7000 6.7902 0.1262 0.0611
6.4846 2.8637 7500 6.4323 0.1423 0.0724
6.0024 3.0546 8000 6.0699 0.1601 0.0882
5.7705 3.2455 8500 5.7652 0.1719 0.0966
5.453 3.4364 9000 5.4848 0.1852 0.1095
5.24 3.6273 9500 5.2315 0.1997 0.1260
5.0462 3.8183 10000 5.0269 0.2122 0.1342
4.8026 4.0092 10500 4.8465 0.2201 0.1456
4.525 4.2001 11000 4.6870 0.2301 0.1564
4.4423 4.3910 11500 4.5442 0.2438 0.1693
4.2558 4.5819 12000 4.4112 0.2503 0.1779
4.138 4.7728 12500 4.2965 0.2606 0.1874
4.094 4.9637 13000 4.1810 0.2689 0.1987
3.8333 5.1546 13500 4.0969 0.2746 0.2057
3.8822 5.3456 14000 4.0132 0.2790 0.2119
3.7825 5.5365 14500 3.9188 0.2896 0.2238
3.5839 5.7274 15000 3.8476 0.2955 0.2290
3.5884 5.9183 15500 3.7643 0.3035 0.2426
3.4725 6.1092 16000 3.6964 0.3109 0.2506
3.4295 6.3001 16500 3.6443 0.3138 0.2566
3.3089 6.4910 17000 3.5774 0.3209 0.2662
3.3234 6.6819 17500 3.5313 0.3238 0.2669
3.2996 6.8729 18000 3.4774 0.3304 0.2778
3.1088 7.0638 18500 3.4367 0.3317 0.2794
3.049 7.2547 19000 3.3922 0.3371 0.2885
3.0197 7.4456 19500 3.3527 0.3384 0.2912
3.0054 7.6365 20000 3.3090 0.3444 0.2966
2.9578 7.8274 20500 3.2725 0.3493 0.3054
2.9004 8.0183 21000 3.2319 0.3531 0.3111
2.79 8.2092 21500 3.1944 0.3591 0.3220
2.7671 8.4002 22000 3.1643 0.3583 0.3233
2.7441 8.5911 22500 3.1439 0.3617 0.3287
2.7601 8.7820 23000 3.1184 0.3658 0.3289
2.7741 8.9729 23500 3.0845 0.3651 0.3360
2.7503 9.1638 24000 3.0580 0.3686 0.3471
2.603 9.3547 24500 3.0327 0.3706 0.3438
2.5722 9.5456 25000 3.0078 0.3726 0.3496
2.5372 9.7365 25500 2.9964 0.3757 0.3482
2.5411 9.9275 26000 2.9608 0.3737 0.3572
2.4594 10.1184 26500 2.9482 0.3752 0.3590
2.4336 10.3093 27000 2.9390 0.3783 0.3601
2.4163 10.5002 27500 2.9005 0.3834 0.3709
2.4297 10.6911 28000 2.8966 0.3837 0.3658
2.4118 10.8820 28500 2.8715 0.3843 0.3743
2.2559 11.0729 29000 2.8604 0.3813 0.3726
2.2856 11.2638 29500 2.8406 0.3872 0.3818
2.3113 11.4548 30000 2.8189 0.3866 0.3846
2.311 11.6457 30500 2.8048 0.3911 0.3880
2.2357 11.8366 31000 2.7862 0.3907 0.3912
2.1633 12.0275 31500 2.7756 0.3905 0.3929
2.1658 12.2184 32000 2.7612 0.3917 0.3951
2.1555 12.4093 32500 2.7593 0.3950 0.3978
2.1318 12.6002 33000 2.7390 0.3966 0.4021
2.1729 12.7911 33500 2.7257 0.3940 0.4021
2.112 12.9821 34000 2.7123 0.3956 0.4059
2.1104 13.1730 34500 2.7084 0.3956 0.4077
2.059 13.3639 35000 2.6962 0.3999 0.4132
2.0413 13.5548 35500 2.6910 0.3986 0.4100
2.0357 13.7457 36000 2.6787 0.3990 0.4110
2.0525 13.9366 36500 2.6616 0.4019 0.4180
1.918 14.1275 37000 2.6545 0.3998 0.4161
1.9494 14.3184 37500 2.6527 0.4034 0.4216
1.9953 14.5094 38000 2.6409 0.4029 0.4233
1.9497 14.7003 38500 2.6393 0.4069 0.4243
1.9438 14.8912 39000 2.6196 0.4040 0.4273
1.8923 15.0821 39500 2.6127 0.4074 0.4344
1.8606 15.2730 40000 2.6162 0.4087 0.4313
1.9162 15.4639 40500 2.6046 0.4053 0.4326
1.8617 15.6548 41000 2.6003 0.4089 0.4348
1.8639 15.8457 41500 2.5879 0.4111 0.4379
1.7972 16.0367 42000 2.5834 0.4083 0.4392
1.762 16.2276 42500 2.5844 0.4085 0.4381
1.777 16.4185 43000 2.5691 0.4092 0.4433
1.8193 16.6094 43500 2.5720 0.4094 0.4437
1.7783 16.8003 44000 2.5529 0.4128 0.4484
1.7733 16.9912 44500 2.5468 0.4104 0.4490
1.7001 17.1821 45000 2.5509 0.4093 0.4487
1.7282 17.3730 45500 2.5500 0.4132 0.4497
1.7175 17.5640 46000 2.5405 0.4104 0.4498
1.7631 17.7549 46500 2.5405 0.4127 0.4498
1.6979 17.9458 47000 2.5342 0.4105 0.4513
1.6255 18.1367 47500 2.5347 0.4148 0.4526
1.65 18.3276 48000 2.5238 0.4126 0.4536
1.6412 18.5185 48500 2.5239 0.4143 0.4565
1.6252 18.7094 49000 2.5211 0.4151 0.4554
1.6629 18.9003 49500 2.5078 0.4160 0.4607
1.5831 19.0913 50000 2.5184 0.4143 0.4570
1.5809 19.2822 50500 2.5014 0.4155 0.4616
1.5816 19.4731 51000 2.5012 0.4176 0.4634
1.5276 19.6640 51500 2.5002 0.4180 0.4631
1.582 19.8549 52000 2.4901 0.4161 0.4627
1.5468 20.0458 52500 2.4929 0.4180 0.4669
1.5483 20.2367 53000 2.4910 0.4183 0.4667
1.5168 20.4276 53500 2.4932 0.4161 0.4656

Framework versions

  • Transformers 4.51.2
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
8
Safetensors
Model size
295M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for MercuraTech/v3_articles_single_base

Finetuned
(3017)
this model