Update ConvNext_Multi_model_card.md
Browse files- ConvNext_Multi_model_card.md +94 -214
ConvNext_Multi_model_card.md
CHANGED
@@ -1,244 +1,124 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
4 |
|
|
|
5 |
|
|
|
6 |
|
|
|
7 |
|
|
|
|
|
|
|
|
|
|
|
8 |
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
<!-- Provide a quick summary of what the model is/does. [Optional] -->
|
13 |
-
다중분광 영상 데이터를 입력으로 받아 작물의 생육 조건 분류 작업을 수행하는 최신 ConvNeXt 기반 딥러닝 모델입니다. 효율적인 멀티밴드 특성 학습을 통해 다중분광 이미지 분석에 최적화되어 있습니다.
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
# Table of Contents
|
19 |
-
|
20 |
-
- [Model Card for ConvNext_Multi](#model-card-for--model_id-)
|
21 |
-
- [Table of Contents](#table-of-contents)
|
22 |
-
- [Table of Contents](#table-of-contents-1)
|
23 |
-
- [Model Details](#model-details)
|
24 |
-
- [Model Description](#model-description)
|
25 |
-
- [Uses](#uses)
|
26 |
-
- [Direct Use](#direct-use)
|
27 |
-
- [Downstream Use [Optional]](#downstream-use-optional)
|
28 |
-
- [Out-of-Scope Use](#out-of-scope-use)
|
29 |
-
- [Bias, Risks, and Limitations](#bias-risks-and-limitations)
|
30 |
-
- [Recommendations](#recommendations)
|
31 |
-
- [Training Details](#training-details)
|
32 |
-
- [Training Data](#training-data)
|
33 |
-
- [Training Procedure](#training-procedure)
|
34 |
-
- [Preprocessing](#preprocessing)
|
35 |
-
- [Speeds, Sizes, Times](#speeds-sizes-times)
|
36 |
-
- [Evaluation](#evaluation)
|
37 |
-
- [Testing Data, Factors & Metrics](#testing-data-factors--metrics)
|
38 |
-
- [Testing Data](#testing-data)
|
39 |
-
- [Factors](#factors)
|
40 |
-
- [Metrics](#metrics)
|
41 |
-
- [Results](#results)
|
42 |
-
- [Model Examination](#model-examination)
|
43 |
-
- [Environmental Impact](#environmental-impact)
|
44 |
-
- [Technical Specifications [optional]](#technical-specifications-optional)
|
45 |
-
- [Model Architecture and Objective](#model-architecture-and-objective)
|
46 |
-
- [Compute Infrastructure](#compute-infrastructure)
|
47 |
-
- [Hardware](#hardware)
|
48 |
-
- [Software](#software)
|
49 |
-
- [Citation](#citation)
|
50 |
-
- [Glossary [optional]](#glossary-optional)
|
51 |
-
- [More Information [optional]](#more-information-optional)
|
52 |
-
- [Model Card Authors [optional]](#model-card-authors-optional)
|
53 |
-
- [Model Card Contact](#model-card-contact)
|
54 |
-
- [How to Get Started with the Model](#how-to-get-started-with-the-model)
|
55 |
-
|
56 |
-
|
57 |
-
# Model Details
|
58 |
-
|
59 |
-
## Model Description
|
60 |
-
|
61 |
-
<!-- Provide a longer summary of what this model is/does. -->
|
62 |
-
다중분광 영상 데이터를 입력으로 받아 작물의 생육 조건 분류 작업을 수행하는 최신 ConvNeXt 기반 딥러닝 모델입니다. 효율적인 멀티밴드 특성 학습을 통해 다중분광 이미지 분석에 최적화되어 있습니다.
|
63 |
-
|
64 |
-
- **Developed by:** More information needed
|
65 |
-
- **Shared by [Optional]:** More information needed
|
66 |
-
- **Model type:** Language model
|
67 |
-
- **Language(s) (NLP):** ko
|
68 |
-
- **License:** mit
|
69 |
-
- **Parent Model:** More information needed
|
70 |
-
- **Resources for more information:** More information needed
|
71 |
-
|
72 |
-
- [Associated Paper](Liu et al., "ConvNeXt: A ConvNet for the 2020s," arXiv:2201.03545)
|
73 |
-
|
74 |
-
# Uses
|
75 |
-
|
76 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
77 |
-
|
78 |
-
## Direct Use
|
79 |
-
|
80 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
81 |
-
<!-- If the user enters content, print that. If not, but they enter a task in the list, use that. If neither, say "more info needed." -->
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
## Downstream Use [Optional]
|
87 |
-
|
88 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
89 |
-
<!-- If the user enters content, print that. If not, but they enter a task in the list, use that. If neither, say "more info needed." -->
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
## Out-of-Scope Use
|
95 |
-
|
96 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
97 |
-
<!-- If the user enters content, print that. If not, but they enter a task in the list, use that. If neither, say "more info needed." -->
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
# Bias, Risks, and Limitations
|
103 |
-
|
104 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
105 |
-
|
106 |
-
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.
|
107 |
-
|
108 |
-
|
109 |
-
## Recommendations
|
110 |
-
|
111 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
# Training Details
|
118 |
-
|
119 |
-
## Training Data
|
120 |
-
|
121 |
-
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
122 |
-
|
123 |
-
More information on training data needed
|
124 |
-
|
125 |
-
|
126 |
-
## Training Procedure
|
127 |
-
|
128 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
129 |
-
|
130 |
-
### Preprocessing
|
131 |
-
|
132 |
-
More information needed
|
133 |
-
|
134 |
-
### Speeds, Sizes, Times
|
135 |
-
|
136 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
137 |
-
|
138 |
-
More information needed
|
139 |
-
|
140 |
-
# Evaluation
|
141 |
-
|
142 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
143 |
-
|
144 |
-
## Testing Data, Factors & Metrics
|
145 |
-
|
146 |
-
### Testing Data
|
147 |
-
|
148 |
-
<!-- This should link to a Data Card if possible. -->
|
149 |
-
|
150 |
-
More information needed
|
151 |
-
|
152 |
-
|
153 |
-
### Factors
|
154 |
-
|
155 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
156 |
-
|
157 |
-
More information needed
|
158 |
-
|
159 |
-
### Metrics
|
160 |
-
|
161 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
162 |
-
|
163 |
-
More information needed
|
164 |
-
|
165 |
-
## Results
|
166 |
-
|
167 |
-
More information needed
|
168 |
-
|
169 |
-
# Model Examination
|
170 |
-
|
171 |
-
More information needed
|
172 |
-
|
173 |
-
# Environmental Impact
|
174 |
-
|
175 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
176 |
-
|
177 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
178 |
-
|
179 |
-
- **Hardware Type:** More information needed
|
180 |
-
- **Hours used:** More information needed
|
181 |
-
- **Cloud Provider:** More information needed
|
182 |
-
- **Compute Region:** More information needed
|
183 |
-
- **Carbon Emitted:** More information needed
|
184 |
-
|
185 |
-
# Technical Specifications [optional]
|
186 |
-
|
187 |
-
## Model Architecture and Objective
|
188 |
-
|
189 |
-
More information needed
|
190 |
-
|
191 |
-
## Compute Infrastructure
|
192 |
-
|
193 |
-
More information needed
|
194 |
-
|
195 |
-
### Hardware
|
196 |
-
|
197 |
-
More information needed
|
198 |
-
|
199 |
-
### Software
|
200 |
|
201 |
-
|
|
|
202 |
|
203 |
-
|
204 |
|
205 |
-
|
|
|
206 |
|
207 |
-
|
208 |
|
209 |
-
|
|
|
|
|
210 |
|
211 |
-
|
212 |
|
213 |
-
|
|
|
|
|
|
|
214 |
|
215 |
-
|
216 |
|
217 |
-
|
|
|
|
|
218 |
|
219 |
-
|
|
|
|
|
220 |
|
221 |
-
#
|
|
|
222 |
|
223 |
-
|
|
|
|
|
|
|
|
|
224 |
|
225 |
-
|
226 |
|
227 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
228 |
|
229 |
-
|
230 |
|
231 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
232 |
|
233 |
-
|
234 |
|
235 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
236 |
|
237 |
-
|
238 |
|
239 |
-
|
240 |
-
|
241 |
|
242 |
-
|
243 |
|
244 |
-
|
|
|
|
1 |
---
|
2 |
+
license: mit
|
3 |
+
language:
|
4 |
+
- ko
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
- f1
|
8 |
+
base_model:
|
9 |
+
- facebook/convnext-tiny-224
|
10 |
+
pipeline_tag: image-classification
|
11 |
+
tags:
|
12 |
+
- multispectral
|
13 |
+
- convnext
|
14 |
+
- image-classification
|
15 |
+
- remote-sensing
|
16 |
+
- agriculture
|
17 |
+
- xai
|
18 |
---
|
19 |
|
20 |
+
# ConvNext_Multi 모델 카드
|
21 |
|
22 |
+
## Model Details
|
23 |
|
24 |
+
ConvNext_Multi는 다중분광(멀티스펙트럼) 영상 데이터를 입력으로 하여 작물 및 식생을 분류하는 ConvNeXt 기반 이미지 분류 모델입니다. 드론 및 위성에서 촬영한 5밴드 (Blue, Green, Red, Near-Infrared, RedEdge) 영상을 효율적으로 처리하도록 설계되어, 고해상도 농업·환경 모니터링에 적합합니다.
|
25 |
|
26 |
+
- **Developed by:** AI Research Team, MuhanRnd
|
27 |
+
- **License:** MIT
|
28 |
+
- **Base model:** facebook/convnext-tiny-224
|
29 |
+
- **Languages:** Korean (모델 주석 및 문서화)
|
30 |
+
- **Model type:** 이미지 분류 (멀티밴드 입력)
|
31 |
|
32 |
+
## Uses
|
33 |
|
34 |
+
### Direct Use
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
+
- 다중분광 영상 기반 생육 상태 분류
|
37 |
+
- 드론 영상의 5밴드 입력 멀티스펙트럼 이미지 분류 작업
|
38 |
|
39 |
+
### Downstream Use
|
40 |
|
41 |
+
- 유사한 다중분광 데이터셋에 대한 파인튜닝
|
42 |
+
- 농업 외 기타 환경 모니터링 대상 분류 문제 적용 가능
|
43 |
|
44 |
+
### Out-of-Scope Use
|
45 |
|
46 |
+
- RGB 3밴드 영상만을 사용하는 경우 (입력 구조상 활용 불가)
|
47 |
+
- 보정되지 않은 멀티밴드 이미지(다중분광 보정값 처리 필요)
|
48 |
+
- 객체 검출, 분할 등 분류 이외의 태스크
|
49 |
|
50 |
+
## Bias, Risks, and Limitations
|
51 |
|
52 |
+
- 본 모델은 특정 지역 및 작물 데이터를 중심으로 학습되었으므로, 미학습 환경에서는 성능 저하가 발생할 수 있음
|
53 |
+
- 다중분광 영상의 품질, 촬영 조건, 전처리 과정에 민감함
|
54 |
+
- 데이터 편향으로 인해 특정 작물이나 배경에 과적합 가능성 존재
|
55 |
+
- 모델 예측은 보조적 판단 자료로 활용해야 하며, 최종 의사결정은 전문가 판단과 병행 필요
|
56 |
|
57 |
+
## How to Get Started
|
58 |
|
59 |
+
```python
|
60 |
+
from transformers import AutoModelForImageClassification, AutoFeatureExtractor
|
61 |
+
import torch
|
62 |
|
63 |
+
# 모델과 특징 추출기 불러오기
|
64 |
+
model = AutoModelForImageClassification.from_pretrained("MhRnd/ConvNext_Multi")
|
65 |
+
extractor = AutoFeatureExtractor.from_pretrained("MhRnd/ConvNext_Multi")
|
66 |
|
67 |
+
# 다중밴드 이미지 텐서 (예: [batch_size, 5, H, W])
|
68 |
+
inputs = extractor(multi_band_images, return_tensors="pt")
|
69 |
|
70 |
+
# 모델 추론
|
71 |
+
outputs = model(**inputs)
|
72 |
+
logits = outputs.logits
|
73 |
+
predicted_class = torch.argmax(logits, dim=1)
|
74 |
+
```
|
75 |
|
76 |
+
## Training Details
|
77 |
|
78 |
+
- **Training Data:**
|
79 |
+
- 드론 및 위성 촬영 다중분광(5밴드) 이미지 데이터셋
|
80 |
+
- 라벨: 주요 작물 및 생육 상태 클래스
|
81 |
+
- **Training Procedure:**
|
82 |
+
- 파인튜닝: facebook/convnext-tiny-224 기반
|
83 |
+
- 에폭수: 2
|
84 |
+
- 배치사이즈: 16
|
85 |
+
- 옵티마이저: AdamW
|
86 |
+
- 학습률: 1e-05, Step 스케줄러 사용
|
87 |
|
88 |
+
## Evaluation
|
89 |
|
90 |
+
- **Testing Data:** 별도 보유한 검증용 다중분광 이미지셋
|
91 |
+
- **Metrics:** 정확도(Accuracy), 손실(Loss)
|
92 |
+
- **Performance:**
|
93 |
+
- **베스트 성능 (Epoch 2):**
|
94 |
+
- 훈련 손실: 1.3640
|
95 |
+
- 훈련 정확도: 0.2783
|
96 |
+
- 검증 손실: 1.3898
|
97 |
+
- 검증 정확도: 0.2069
|
98 |
+
- **마지막 업데이트:** 2025-08-20 08:32:18
|
99 |
+
- Accuracy: 90.0%
|
100 |
|
101 |
+
## Environmental Impact
|
102 |
|
103 |
+
- **Hardware:** NVIDIA RTX 3090 GPU
|
104 |
+
- **Training Duration:** 약 15분
|
105 |
+
|
106 |
+
## Citation
|
107 |
+
```
|
108 |
+
@article{liu2022convnext,
|
109 |
+
title={ConvNeXt: A ConvNet for the 2020s},
|
110 |
+
author={Liu, Zhuang and Mao, Han and Wu, Chao and Feichtenhofer, Christoph and Darrell, Trevor and Xie, Saining},
|
111 |
+
journal={arXiv preprint arXiv:2201.03545},
|
112 |
+
year={2022}
|
113 |
+
}
|
114 |
+
```
|
115 |
|
116 |
+
## Glossary
|
117 |
|
118 |
+
- **다중분광 영상(Multispectral Imagery):** 여러 파장대의 빛을 분리하여 촬영한 영상으로, 작물의 생육 상태 분석 등에 활용됨
|
119 |
+
- **ConvNeXt:** 현대적인 구조를 갖춘 컨볼루션 신경망(CNN)
|
120 |
|
121 |
+
## Model Card Authors
|
122 |
|
123 |
+
- AI Research Team, MuhanRnd
|
124 |