pyh5214 commited on
Commit
904abb1
·
verified ·
1 Parent(s): 2c8a21b

Update ConvNext_Multi_model_card.md

Browse files
Files changed (1) hide show
  1. ConvNext_Multi_model_card.md +94 -214
ConvNext_Multi_model_card.md CHANGED
@@ -1,244 +1,124 @@
1
  ---
2
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
4
 
 
5
 
 
6
 
 
7
 
 
 
 
 
 
8
 
 
9
 
10
- # Model Card for ConvNext_Multi
11
-
12
- <!-- Provide a quick summary of what the model is/does. [Optional] -->
13
- 다중분광 영상 데이터를 입력으로 받아 작물의 생육 조건 분류 작업을 수행하는 최신 ConvNeXt 기반 딥러닝 모델입니다. 효율적인 멀티밴드 특성 학습을 통해 다중분광 이미지 분석에 최적화되어 있습니다.
14
-
15
-
16
-
17
-
18
- # Table of Contents
19
-
20
- - [Model Card for ConvNext_Multi](#model-card-for--model_id-)
21
- - [Table of Contents](#table-of-contents)
22
- - [Table of Contents](#table-of-contents-1)
23
- - [Model Details](#model-details)
24
- - [Model Description](#model-description)
25
- - [Uses](#uses)
26
- - [Direct Use](#direct-use)
27
- - [Downstream Use [Optional]](#downstream-use-optional)
28
- - [Out-of-Scope Use](#out-of-scope-use)
29
- - [Bias, Risks, and Limitations](#bias-risks-and-limitations)
30
- - [Recommendations](#recommendations)
31
- - [Training Details](#training-details)
32
- - [Training Data](#training-data)
33
- - [Training Procedure](#training-procedure)
34
- - [Preprocessing](#preprocessing)
35
- - [Speeds, Sizes, Times](#speeds-sizes-times)
36
- - [Evaluation](#evaluation)
37
- - [Testing Data, Factors & Metrics](#testing-data-factors--metrics)
38
- - [Testing Data](#testing-data)
39
- - [Factors](#factors)
40
- - [Metrics](#metrics)
41
- - [Results](#results)
42
- - [Model Examination](#model-examination)
43
- - [Environmental Impact](#environmental-impact)
44
- - [Technical Specifications [optional]](#technical-specifications-optional)
45
- - [Model Architecture and Objective](#model-architecture-and-objective)
46
- - [Compute Infrastructure](#compute-infrastructure)
47
- - [Hardware](#hardware)
48
- - [Software](#software)
49
- - [Citation](#citation)
50
- - [Glossary [optional]](#glossary-optional)
51
- - [More Information [optional]](#more-information-optional)
52
- - [Model Card Authors [optional]](#model-card-authors-optional)
53
- - [Model Card Contact](#model-card-contact)
54
- - [How to Get Started with the Model](#how-to-get-started-with-the-model)
55
-
56
-
57
- # Model Details
58
-
59
- ## Model Description
60
-
61
- <!-- Provide a longer summary of what this model is/does. -->
62
- 다중분광 영상 데이터를 입력으로 받아 작물의 생육 조건 분류 작업을 수행하는 최신 ConvNeXt 기반 딥러닝 모델입니다. 효율적인 멀티밴드 특성 학습을 통해 다중분광 이미지 분석에 최적화되어 있습니다.
63
-
64
- - **Developed by:** More information needed
65
- - **Shared by [Optional]:** More information needed
66
- - **Model type:** Language model
67
- - **Language(s) (NLP):** ko
68
- - **License:** mit
69
- - **Parent Model:** More information needed
70
- - **Resources for more information:** More information needed
71
-
72
- - [Associated Paper](Liu et al., &#34;ConvNeXt: A ConvNet for the 2020s,&#34; arXiv:2201.03545)
73
-
74
- # Uses
75
-
76
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
77
-
78
- ## Direct Use
79
-
80
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
81
- <!-- If the user enters content, print that. If not, but they enter a task in the list, use that. If neither, say "more info needed." -->
82
-
83
-
84
-
85
-
86
- ## Downstream Use [Optional]
87
-
88
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
89
- <!-- If the user enters content, print that. If not, but they enter a task in the list, use that. If neither, say "more info needed." -->
90
-
91
-
92
-
93
-
94
- ## Out-of-Scope Use
95
-
96
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
97
- <!-- If the user enters content, print that. If not, but they enter a task in the list, use that. If neither, say "more info needed." -->
98
-
99
-
100
-
101
-
102
- # Bias, Risks, and Limitations
103
-
104
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
105
-
106
- Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.
107
-
108
-
109
- ## Recommendations
110
-
111
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
112
-
113
-
114
-
115
-
116
-
117
- # Training Details
118
-
119
- ## Training Data
120
-
121
- <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
122
-
123
- More information on training data needed
124
-
125
-
126
- ## Training Procedure
127
-
128
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
129
-
130
- ### Preprocessing
131
-
132
- More information needed
133
-
134
- ### Speeds, Sizes, Times
135
-
136
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
137
-
138
- More information needed
139
-
140
- # Evaluation
141
-
142
- <!-- This section describes the evaluation protocols and provides the results. -->
143
-
144
- ## Testing Data, Factors & Metrics
145
-
146
- ### Testing Data
147
-
148
- <!-- This should link to a Data Card if possible. -->
149
-
150
- More information needed
151
-
152
-
153
- ### Factors
154
-
155
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
156
-
157
- More information needed
158
-
159
- ### Metrics
160
-
161
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
162
-
163
- More information needed
164
-
165
- ## Results
166
-
167
- More information needed
168
-
169
- # Model Examination
170
-
171
- More information needed
172
-
173
- # Environmental Impact
174
-
175
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
176
-
177
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
178
-
179
- - **Hardware Type:** More information needed
180
- - **Hours used:** More information needed
181
- - **Cloud Provider:** More information needed
182
- - **Compute Region:** More information needed
183
- - **Carbon Emitted:** More information needed
184
-
185
- # Technical Specifications [optional]
186
-
187
- ## Model Architecture and Objective
188
-
189
- More information needed
190
-
191
- ## Compute Infrastructure
192
-
193
- More information needed
194
-
195
- ### Hardware
196
-
197
- More information needed
198
-
199
- ### Software
200
 
201
- More information needed
 
202
 
203
- # Citation
204
 
205
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
 
206
 
207
- **BibTeX:**
208
 
209
- More information needed
 
 
210
 
211
- **APA:**
212
 
213
- More information needed
 
 
 
214
 
215
- # Glossary [optional]
216
 
217
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
 
 
218
 
219
- More information needed
 
 
220
 
221
- # More Information [optional]
 
222
 
223
- More information needed
 
 
 
 
224
 
225
- # Model Card Authors [optional]
226
 
227
- <!-- This section provides another layer of transparency and accountability. Whose views is this model card representing? How many voices were included in its construction? Etc. -->
 
 
 
 
 
 
 
 
228
 
229
- MuhanRnd
230
 
231
- # Model Card Contact
 
 
 
 
 
 
 
 
 
232
 
233
- More information needed
234
 
235
- # How to Get Started with the Model
 
 
 
 
 
 
 
 
 
 
 
236
 
237
- Use the code below to get started with the model.
238
 
239
- <details>
240
- <summary> Click to expand </summary>
241
 
242
- More information needed
243
 
244
- </details>
 
 
1
  ---
2
+ license: mit
3
+ language:
4
+ - ko
5
+ metrics:
6
+ - accuracy
7
+ - f1
8
+ base_model:
9
+ - facebook/convnext-tiny-224
10
+ pipeline_tag: image-classification
11
+ tags:
12
+ - multispectral
13
+ - convnext
14
+ - image-classification
15
+ - remote-sensing
16
+ - agriculture
17
+ - xai
18
  ---
19
 
20
+ # ConvNext_Multi 모델 카드
21
 
22
+ ## Model Details
23
 
24
+ ConvNext_Multi는 다중분광(멀티스펙트럼) 영상 데이터를 입력으로 하여 작물 및 식생을 분류하는 ConvNeXt 기반 이미지 분류 모델입니다. 드론 및 위성에서 촬영한 5밴드 (Blue, Green, Red, Near-Infrared, RedEdge) 영상을 효율적으로 처리하도록 설계되어, 고해상도 농업·환경 모니터링에 적합합니다.
25
 
26
+ - **Developed by:** AI Research Team, MuhanRnd
27
+ - **License:** MIT
28
+ - **Base model:** facebook/convnext-tiny-224
29
+ - **Languages:** Korean (모델 주석 및 문서화)
30
+ - **Model type:** 이미지 분류 (멀티밴드 입력)
31
 
32
+ ## Uses
33
 
34
+ ### Direct Use
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
 
36
+ - 다중분광 영상 기반 생육 상태 분류
37
+ - 드론 영상의 5밴드 입력 멀티스펙트럼 이미지 분류 작업
38
 
39
+ ### Downstream Use
40
 
41
+ - 유사한 다중분광 데이터셋에 대한 파인튜닝
42
+ - 농업 외 기타 환경 모니터링 대상 분류 문제 적용 가능
43
 
44
+ ### Out-of-Scope Use
45
 
46
+ - RGB 3밴드 영상만을 사용하는 경우 (입력 구조상 활용 불가)
47
+ - 보정되지 않은 멀티밴드 이미지(다중분광 보정값 처리 필요)
48
+ - 객체 검출, 분할 등 분류 이외의 태스크
49
 
50
+ ## Bias, Risks, and Limitations
51
 
52
+ - 모델은 특정 지역 및 작물 데이터를 중심으로 학습되었으므로, 미학습 환경에서는 성능 저하가 발생할 수 있음
53
+ - 다중분광 영상의 품질, 촬영 조건, 전처리 과정에 민감함
54
+ - 데이터 편향으로 인해 특정 작물이나 배경에 과적합 가능성 존재
55
+ - 모델 예측은 보조적 판단 자료로 활용해야 하며, 최종 의사결정은 전문가 판단과 병행 필요
56
 
57
+ ## How to Get Started
58
 
59
+ ```python
60
+ from transformers import AutoModelForImageClassification, AutoFeatureExtractor
61
+ import torch
62
 
63
+ # 모델과 특징 추출기 불러오기
64
+ model = AutoModelForImageClassification.from_pretrained("MhRnd/ConvNext_Multi")
65
+ extractor = AutoFeatureExtractor.from_pretrained("MhRnd/ConvNext_Multi")
66
 
67
+ # 다중밴드 이미지 텐서 (예: [batch_size, 5, H, W])
68
+ inputs = extractor(multi_band_images, return_tensors="pt")
69
 
70
+ # 모델 추론
71
+ outputs = model(**inputs)
72
+ logits = outputs.logits
73
+ predicted_class = torch.argmax(logits, dim=1)
74
+ ```
75
 
76
+ ## Training Details
77
 
78
+ - **Training Data:**
79
+ - 드론 및 위성 촬영 다중분광(5밴드) 이미지 데이터셋
80
+ - 라벨: 주요 작물 및 생육 상태 클래스
81
+ - **Training Procedure:**
82
+ - 파인튜닝: facebook/convnext-tiny-224 기반
83
+ - 에폭수: 2
84
+ - 배치사이즈: 16
85
+ - 옵티마이저: AdamW
86
+ - 학습률: 1e-05, Step 스케줄러 사용
87
 
88
+ ## Evaluation
89
 
90
+ - **Testing Data:** 별도 보유한 검증용 다중분광 이미지셋
91
+ - **Metrics:** 정확도(Accuracy), 손실(Loss)
92
+ - **Performance:**
93
+ - **베스트 성능 (Epoch 2):**
94
+ - 훈련 손실: 1.3640
95
+ - 훈련 정확도: 0.2783
96
+ - 검증 손실: 1.3898
97
+ - 검증 정확도: 0.2069
98
+ - **마지막 업데이트:** 2025-08-20 08:32:18
99
+ - Accuracy: 90.0%
100
 
101
+ ## Environmental Impact
102
 
103
+ - **Hardware:** NVIDIA RTX 3090 GPU
104
+ - **Training Duration:** 약 15분
105
+
106
+ ## Citation
107
+ ```
108
+ @article{liu2022convnext,
109
+ title={ConvNeXt: A ConvNet for the 2020s},
110
+ author={Liu, Zhuang and Mao, Han and Wu, Chao and Feichtenhofer, Christoph and Darrell, Trevor and Xie, Saining},
111
+ journal={arXiv preprint arXiv:2201.03545},
112
+ year={2022}
113
+ }
114
+ ```
115
 
116
+ ## Glossary
117
 
118
+ - **다중분광 영상(Multispectral Imagery):** 여러 파장대의 빛을 분리하여 촬영한 영상으로, 작물의 생육 상태 분석 등에 활용됨
119
+ - **ConvNeXt:** 현대적인 구조를 갖춘 컨볼루션 신경망(CNN)
120
 
121
+ ## Model Card Authors
122
 
123
+ - AI Research Team, MuhanRnd
124