Add text-generation pipeline tag and usage example

#1
by nielsr HF Staff - opened
Files changed (1) hide show
  1. README.md +24 -6
README.md CHANGED
@@ -1,15 +1,17 @@
1
  ---
2
- license: mit
3
- language:
4
- - en
5
- tags:
6
- - LLM
7
- library_name: transformers
8
  base_model:
9
  - Qwen/Qwen2.5-32B
10
  datasets:
11
  - MiniMaxAI/SynLogic
 
 
 
 
 
 
 
12
  ---
 
13
  # SynLogic Zero-Mix-3: Large-Scale Multi-Domain Reasoning Model
14
 
15
  * ๐Ÿ™ **GitHub Repo:** [https://github.com/MiniMax-AI/SynLogic](https://github.com/MiniMax-AI/SynLogic)
@@ -20,6 +22,22 @@ datasets:
20
 
21
  **Zero-Mix-3** is an advanced multi-domain reasoning model trained using Zero-RL (reinforcement learning from scratch) on a diverse mixture of logical reasoning, mathematical, and coding data. Built on Qwen2.5-32B-Base, this model demonstrates the power of combining diverse verifiable reasoning tasks in a unified training framework.
22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
  ## Key Features
24
 
25
  * **Multi-Domain Training:** Jointly trained on logical reasoning (SynLogic), mathematics, and coding tasks
 
1
  ---
 
 
 
 
 
 
2
  base_model:
3
  - Qwen/Qwen2.5-32B
4
  datasets:
5
  - MiniMaxAI/SynLogic
6
+ language:
7
+ - en
8
+ library_name: transformers
9
+ license: mit
10
+ tags:
11
+ - LLM
12
+ pipeline_tag: text-generation
13
  ---
14
+
15
  # SynLogic Zero-Mix-3: Large-Scale Multi-Domain Reasoning Model
16
 
17
  * ๐Ÿ™ **GitHub Repo:** [https://github.com/MiniMax-AI/SynLogic](https://github.com/MiniMax-AI/SynLogic)
 
22
 
23
  **Zero-Mix-3** is an advanced multi-domain reasoning model trained using Zero-RL (reinforcement learning from scratch) on a diverse mixture of logical reasoning, mathematical, and coding data. Built on Qwen2.5-32B-Base, this model demonstrates the power of combining diverse verifiable reasoning tasks in a unified training framework.
24
 
25
+ ## Usage
26
+
27
+ ```python
28
+ from transformers import AutoModelForCausalLM, AutoTokenizer
29
+ import torch
30
+
31
+ model_name = "MiniMaxAI/SynLogic-Mix-3-32B"
32
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
33
+ model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
34
+
35
+ prompt = "What is 2 + 2?"
36
+ inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
37
+ outputs = model.generate(**inputs, max_new_tokens=20)
38
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
39
+ ```
40
+
41
  ## Key Features
42
 
43
  * **Multi-Domain Training:** Jointly trained on logical reasoning (SynLogic), mathematics, and coding tasks