Upload handler.py
Browse files- handler.py +49 -0
handler.py
ADDED
|
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Any, Dict, List
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
MAX_INPUT_LENGTH = 256
|
| 6 |
+
MAX_OUTPUT_LENGTH = 128
|
| 7 |
+
|
| 8 |
+
class EndpointHandler:
|
| 9 |
+
def __init__(self, model_dir: str = "", **kwargs: Any) -> None:
|
| 10 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_dir)
|
| 11 |
+
self.model = AutoModelForSeq2SeqLM.from_pretrained(model_dir)
|
| 12 |
+
self.model.eval()
|
| 13 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 14 |
+
self.model.to(self.device)
|
| 15 |
+
|
| 16 |
+
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
| 17 |
+
inputs = data.get("inputs")
|
| 18 |
+
if not inputs:
|
| 19 |
+
raise ValueError("No 'inputs' found in the request data.")
|
| 20 |
+
|
| 21 |
+
if isinstance(inputs, str):
|
| 22 |
+
inputs = [inputs]
|
| 23 |
+
|
| 24 |
+
tokenized_inputs = self.tokenizer(
|
| 25 |
+
inputs,
|
| 26 |
+
max_length=MAX_INPUT_LENGTH,
|
| 27 |
+
padding=True,
|
| 28 |
+
truncation=True,
|
| 29 |
+
return_tensors="pt"
|
| 30 |
+
).to(self.device)
|
| 31 |
+
|
| 32 |
+
try:
|
| 33 |
+
with torch.no_grad():
|
| 34 |
+
outputs = self.model.generate(
|
| 35 |
+
tokenized_inputs["input_ids"],
|
| 36 |
+
attention_mask=tokenized_inputs["attention_mask"],
|
| 37 |
+
max_length=MAX_OUTPUT_LENGTH,
|
| 38 |
+
num_beams=4, # Slightly faster
|
| 39 |
+
no_repeat_ngram_size=3,
|
| 40 |
+
early_stopping=True,
|
| 41 |
+
do_sample=False,
|
| 42 |
+
pad_token_id=self.tokenizer.pad_token_id
|
| 43 |
+
)
|
| 44 |
+
decoded_outputs = self.tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
| 45 |
+
results = [{"generated_text": text} for text in decoded_outputs]
|
| 46 |
+
return results
|
| 47 |
+
except Exception as e:
|
| 48 |
+
# Log error and return a message
|
| 49 |
+
return [{"generated_text": f"Error: {str(e)}"}]
|