BGE base Financial Matryoshka

This is a sentence-transformers model finetuned from BAAI/bge-small-en-v1.5 on the json dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-small-en-v1.5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 384 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • json
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("MistyDragon/bge-base-financial-matryoshka")
# Run inference
sentences = [
    'On June 7, 2023, the Company and Epic filed petitions with the Circuit Court requesting further review of the decision. On June 30, 2023, the Circuit Court denied both petitions.',
    'When did the Circuit Court deny the petitions filed by Apple and Epic for further review of the decision?',
    'What was the adjusted debt to EBITDAR ratio for the fiscal year ended August 26, 2023?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.6886
cosine_accuracy@3 0.8143
cosine_accuracy@5 0.8557
cosine_accuracy@10 0.8971
cosine_precision@1 0.6886
cosine_precision@3 0.2714
cosine_precision@5 0.1711
cosine_precision@10 0.0897
cosine_recall@1 0.6886
cosine_recall@3 0.8143
cosine_recall@5 0.8557
cosine_recall@10 0.8971
cosine_ndcg@10 0.7952
cosine_mrr@10 0.7624
cosine_map@100 0.7662

Information Retrieval

Metric Value
cosine_accuracy@1 0.6886
cosine_accuracy@3 0.7971
cosine_accuracy@5 0.8443
cosine_accuracy@10 0.8914
cosine_precision@1 0.6886
cosine_precision@3 0.2657
cosine_precision@5 0.1689
cosine_precision@10 0.0891
cosine_recall@1 0.6886
cosine_recall@3 0.7971
cosine_recall@5 0.8443
cosine_recall@10 0.8914
cosine_ndcg@10 0.7889
cosine_mrr@10 0.7563
cosine_map@100 0.76

Information Retrieval

Metric Value
cosine_accuracy@1 0.6571
cosine_accuracy@3 0.7786
cosine_accuracy@5 0.8229
cosine_accuracy@10 0.8629
cosine_precision@1 0.6571
cosine_precision@3 0.2595
cosine_precision@5 0.1646
cosine_precision@10 0.0863
cosine_recall@1 0.6571
cosine_recall@3 0.7786
cosine_recall@5 0.8229
cosine_recall@10 0.8629
cosine_ndcg@10 0.7609
cosine_mrr@10 0.7282
cosine_map@100 0.733

Training Details

Training Dataset

json

  • Dataset: json
  • Size: 6,300 training samples
  • Columns: positive and anchor
  • Approximate statistics based on the first 1000 samples:
    positive anchor
    type string string
    details
    • min: 4 tokens
    • mean: 45.35 tokens
    • max: 512 tokens
    • min: 7 tokens
    • mean: 20.38 tokens
    • max: 42 tokens
  • Samples:
    positive anchor
    In a competitive home improvement market, the company focuses on factors such as customer experience, price, quality, product availability, and delivery options to attract and retain customers. How does the company compete with other businesses in the home improvement market?
    Historically, the majority of revenue from North American and European regions, which experience higher sales of solar products in the second, third, and fourth quarters, have been affected by seasonal customer demand trends. What seasonal sales trend does the solar sector typically exhibit?
    We expect to have adequate supplies or sources of availability of raw materials necessary to meet our needs; however, there always are risks and uncertainties with respect to the supply of raw materials that could impact availability in sufficient quantities and at cost effective prices to meet our needs. What are some of the risk factors associated with raw material supplies for a vehicle manufacturer?
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 8
  • learning_rate: 2e-05
  • num_train_epochs: 4
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • bf16: True
  • tf32: False
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 8
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 8
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: False
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss dim_256_cosine_ndcg@10 dim_128_cosine_ndcg@10 dim_64_cosine_ndcg@10
0.1015 10 4.6757 - - -
0.2030 20 3.7954 - - -
0.3046 30 2.8699 - - -
0.4061 40 1.9741 - - -
0.5076 50 1.3134 - - -
0.6091 60 1.3616 - - -
0.7107 70 1.4887 - - -
0.8122 80 1.6192 - - -
0.9137 90 1.1806 - - -
1.0 99 - 0.7859 0.7743 0.7488
1.0102 100 1.2233 - - -
1.1117 110 0.8571 - - -
1.2132 120 0.9667 - - -
1.3147 130 0.9762 - - -
1.4162 140 0.8002 - - -
1.5178 150 0.7964 - - -
1.6193 160 0.9702 - - -
1.7208 170 0.653 - - -
1.8223 180 0.8967 - - -
1.9239 190 0.3674 - - -
2.0 198 - 0.7922 0.7882 0.7593
2.0203 200 0.5451 - - -
2.1218 210 0.8927 - - -
2.2234 220 0.603 - - -
2.3249 230 0.5169 - - -
2.4264 240 0.7078 - - -
2.5279 250 0.67 - - -
2.6294 260 0.8605 - - -
2.7310 270 0.9597 - - -
2.8325 280 0.503 - - -
2.9340 290 0.5416 - - -
3.0 297 - 0.7936 0.7898 0.7625
3.0305 300 0.5506 - - -
3.1320 310 0.7123 - - -
3.2335 320 0.5213 - - -
3.3350 330 0.8629 - - -
3.4365 340 0.683 - - -
3.5381 350 0.4859 - - -
3.6396 360 0.5015 - - -
3.7411 370 0.5414 - - -
3.8426 380 0.6515 - - -
3.9442 390 0.6247 - - -
4.0 396 - 0.7952 0.7889 0.7609
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.11.13
  • Sentence Transformers: 4.1.0
  • Transformers: 4.52.4
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.8.1
  • Datasets: 3.6.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
7
Safetensors
Model size
33.4M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for MistyDragon/bge-base-financial-matryoshka

Finetuned
(199)
this model

Evaluation results