BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-small-en-v1.5 on the json dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-small-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("MistyDragon/bge-base-financial-matryoshka")
# Run inference
sentences = [
'On June 7, 2023, the Company and Epic filed petitions with the Circuit Court requesting further review of the decision. On June 30, 2023, the Circuit Court denied both petitions.',
'When did the Circuit Court deny the petitions filed by Apple and Epic for further review of the decision?',
'What was the adjusted debt to EBITDAR ratio for the fiscal year ended August 26, 2023?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_256
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 256 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6886 |
cosine_accuracy@3 | 0.8143 |
cosine_accuracy@5 | 0.8557 |
cosine_accuracy@10 | 0.8971 |
cosine_precision@1 | 0.6886 |
cosine_precision@3 | 0.2714 |
cosine_precision@5 | 0.1711 |
cosine_precision@10 | 0.0897 |
cosine_recall@1 | 0.6886 |
cosine_recall@3 | 0.8143 |
cosine_recall@5 | 0.8557 |
cosine_recall@10 | 0.8971 |
cosine_ndcg@10 | 0.7952 |
cosine_mrr@10 | 0.7624 |
cosine_map@100 | 0.7662 |
Information Retrieval
- Dataset:
dim_128
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 128 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6886 |
cosine_accuracy@3 | 0.7971 |
cosine_accuracy@5 | 0.8443 |
cosine_accuracy@10 | 0.8914 |
cosine_precision@1 | 0.6886 |
cosine_precision@3 | 0.2657 |
cosine_precision@5 | 0.1689 |
cosine_precision@10 | 0.0891 |
cosine_recall@1 | 0.6886 |
cosine_recall@3 | 0.7971 |
cosine_recall@5 | 0.8443 |
cosine_recall@10 | 0.8914 |
cosine_ndcg@10 | 0.7889 |
cosine_mrr@10 | 0.7563 |
cosine_map@100 | 0.76 |
Information Retrieval
- Dataset:
dim_64
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 64 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6571 |
cosine_accuracy@3 | 0.7786 |
cosine_accuracy@5 | 0.8229 |
cosine_accuracy@10 | 0.8629 |
cosine_precision@1 | 0.6571 |
cosine_precision@3 | 0.2595 |
cosine_precision@5 | 0.1646 |
cosine_precision@10 | 0.0863 |
cosine_recall@1 | 0.6571 |
cosine_recall@3 | 0.7786 |
cosine_recall@5 | 0.8229 |
cosine_recall@10 | 0.8629 |
cosine_ndcg@10 | 0.7609 |
cosine_mrr@10 | 0.7282 |
cosine_map@100 | 0.733 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 6,300 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 4 tokens
- mean: 45.35 tokens
- max: 512 tokens
- min: 7 tokens
- mean: 20.38 tokens
- max: 42 tokens
- Samples:
positive anchor In a competitive home improvement market, the company focuses on factors such as customer experience, price, quality, product availability, and delivery options to attract and retain customers.
How does the company compete with other businesses in the home improvement market?
Historically, the majority of revenue from North American and European regions, which experience higher sales of solar products in the second, third, and fourth quarters, have been affected by seasonal customer demand trends.
What seasonal sales trend does the solar sector typically exhibit?
We expect to have adequate supplies or sources of availability of raw materials necessary to meet our needs; however, there always are risks and uncertainties with respect to the supply of raw materials that could impact availability in sufficient quantities and at cost effective prices to meet our needs.
What are some of the risk factors associated with raw material supplies for a vehicle manufacturer?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_eval_batch_size
: 16gradient_accumulation_steps
: 8learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Falseload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 8per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 8eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Falselocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
---|---|---|---|---|---|
0.1015 | 10 | 4.6757 | - | - | - |
0.2030 | 20 | 3.7954 | - | - | - |
0.3046 | 30 | 2.8699 | - | - | - |
0.4061 | 40 | 1.9741 | - | - | - |
0.5076 | 50 | 1.3134 | - | - | - |
0.6091 | 60 | 1.3616 | - | - | - |
0.7107 | 70 | 1.4887 | - | - | - |
0.8122 | 80 | 1.6192 | - | - | - |
0.9137 | 90 | 1.1806 | - | - | - |
1.0 | 99 | - | 0.7859 | 0.7743 | 0.7488 |
1.0102 | 100 | 1.2233 | - | - | - |
1.1117 | 110 | 0.8571 | - | - | - |
1.2132 | 120 | 0.9667 | - | - | - |
1.3147 | 130 | 0.9762 | - | - | - |
1.4162 | 140 | 0.8002 | - | - | - |
1.5178 | 150 | 0.7964 | - | - | - |
1.6193 | 160 | 0.9702 | - | - | - |
1.7208 | 170 | 0.653 | - | - | - |
1.8223 | 180 | 0.8967 | - | - | - |
1.9239 | 190 | 0.3674 | - | - | - |
2.0 | 198 | - | 0.7922 | 0.7882 | 0.7593 |
2.0203 | 200 | 0.5451 | - | - | - |
2.1218 | 210 | 0.8927 | - | - | - |
2.2234 | 220 | 0.603 | - | - | - |
2.3249 | 230 | 0.5169 | - | - | - |
2.4264 | 240 | 0.7078 | - | - | - |
2.5279 | 250 | 0.67 | - | - | - |
2.6294 | 260 | 0.8605 | - | - | - |
2.7310 | 270 | 0.9597 | - | - | - |
2.8325 | 280 | 0.503 | - | - | - |
2.9340 | 290 | 0.5416 | - | - | - |
3.0 | 297 | - | 0.7936 | 0.7898 | 0.7625 |
3.0305 | 300 | 0.5506 | - | - | - |
3.1320 | 310 | 0.7123 | - | - | - |
3.2335 | 320 | 0.5213 | - | - | - |
3.3350 | 330 | 0.8629 | - | - | - |
3.4365 | 340 | 0.683 | - | - | - |
3.5381 | 350 | 0.4859 | - | - | - |
3.6396 | 360 | 0.5015 | - | - | - |
3.7411 | 370 | 0.5414 | - | - | - |
3.8426 | 380 | 0.6515 | - | - | - |
3.9442 | 390 | 0.6247 | - | - | - |
4.0 | 396 | - | 0.7952 | 0.7889 | 0.7609 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.13
- Sentence Transformers: 4.1.0
- Transformers: 4.52.4
- PyTorch: 2.6.0+cu124
- Accelerate: 1.8.1
- Datasets: 3.6.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 7
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for MistyDragon/bge-base-financial-matryoshka
Base model
BAAI/bge-small-en-v1.5Evaluation results
- Cosine Accuracy@1 on dim 256self-reported0.689
- Cosine Accuracy@3 on dim 256self-reported0.814
- Cosine Accuracy@5 on dim 256self-reported0.856
- Cosine Accuracy@10 on dim 256self-reported0.897
- Cosine Precision@1 on dim 256self-reported0.689
- Cosine Precision@3 on dim 256self-reported0.271
- Cosine Precision@5 on dim 256self-reported0.171
- Cosine Precision@10 on dim 256self-reported0.090
- Cosine Recall@1 on dim 256self-reported0.689
- Cosine Recall@3 on dim 256self-reported0.814