File size: 28,235 Bytes
4f188e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-small-en-v1.5
widget:
- source_sentence: During the year ended December 31, 2023, cash flows used in investing
    activities also included proceeds from the sale of our investment in Saudi Cinema
    Company, LLC of $30.0 million.
  sentences:
  - What are some of the risks associated with the company's ability to maintain its
    concession in Macao and gaming license in Singapore?
  - What were the proceeds from the sale of investment in Saudi Cinema Company, LLC
    during 2023?
  - What financial impact did the change in accounting estimate regarding server and
    network equipment have on Microsoft in fiscal year 2023?
- source_sentence: During 2023, U.S. sales of natural gas averaged 4.7 billion cubic
    feet per day.
  sentences:
  - What constitutes a material weakness in internal control over financial reporting,
    according to the criteria set by COSO?
  - What was Chevron's total average daily sales of natural gas in the U.S. in 2023?
  - What total amount of assets were measured at fair value as of January 31, 2022,
    and how is this divided across the fair value hierarchy levels?
- source_sentence: The net cash provided by operating activities during fiscal 2023
    was related to net income of $208 million, adjusted for non-cash items including
    $3.8 billion of depreciation and amortization and $3.3 billion related to stock-based
    compensation expense.
  sentences:
  - What was the net cash provided by operating activities for fiscal 2023?
  - How does Nike protect its intellectual property rights against infringement?
  - What specific feature does the Peloton Bike+ offer regarding workout experience?
- source_sentence: Year-over-Year Changes in Operating Results for 2023 compared to
    2022 showed a decrease of $1,858 million for FedEx Express, an increase of $498
    million for FedEx Ground, and an increase of $262 million for FedEx Freight.
  sentences:
  - How did comparable sales growth, including fuel, contribute to net sales for Sam's
    Club in fiscal 2023?
  - What is the role of Level 1, Level 2, and Level 3 inputs in the fair value hierarchy
    according to ASC 820?
  - What were the operating results changes year-over-year for the FedEx Express,
    Ground, and Freight segments in 2023 compared to 2022?
- source_sentence: Caterpillar Insurance Co. Ltd. is registered as a Class 2 (General
    Business) and Class B (Long-Term) insurer with the Bermuda Monetary Authority.
  sentences:
  - What types of insurance licenses does Caterpillar Insurance Co. Ltd. hold in Bermuda?
  - What is indicated by 'Item 8' in a financial document?
  - What does Gross Merchandise Volume (GMV) represent in financial terms?
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: BGE base Financial Matryoshka
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.6985714285714286
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8314285714285714
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8728571428571429
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9171428571428571
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6985714285714286
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.27714285714285714
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17457142857142854
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09171428571428569
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6985714285714286
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8314285714285714
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8728571428571429
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9171428571428571
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8091312862711041
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7744716553287979
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.778107400978576
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.6771428571428572
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8171428571428572
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8642857142857143
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9171428571428571
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6771428571428572
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2723809523809524
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17285714285714285
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09171428571428569
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6771428571428572
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8171428571428572
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8642857142857143
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9171428571428571
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7978178514618532
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7596043083900226
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7625576612954725
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.66
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8014285714285714
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8542857142857143
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9028571428571428
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.66
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2671428571428571
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17085714285714285
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09028571428571427
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.66
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8014285714285714
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8542857142857143
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9028571428571428
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7797125058125993
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7404512471655325
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7439184556821083
      name: Cosine Map@100
---

# BGE base Financial Matryoshka

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) on the json dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) <!-- at revision 5c38ec7c405ec4b44b94cc5a9bb96e735b38267a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 384 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - json
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("MistyDragon/bge-small-financial-matryoshka")
# Run inference
sentences = [
    'Caterpillar Insurance Co. Ltd. is registered as a Class 2 (General Business) and Class B (Long-Term) insurer with the Bermuda Monetary Authority.',
    'What types of insurance licenses does Caterpillar Insurance Co. Ltd. hold in Bermuda?',
    "What is indicated by 'Item 8' in a financial document?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
  ```json
  {
      "truncate_dim": 256
  }
  ```

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.6986     |
| cosine_accuracy@3   | 0.8314     |
| cosine_accuracy@5   | 0.8729     |
| cosine_accuracy@10  | 0.9171     |
| cosine_precision@1  | 0.6986     |
| cosine_precision@3  | 0.2771     |
| cosine_precision@5  | 0.1746     |
| cosine_precision@10 | 0.0917     |
| cosine_recall@1     | 0.6986     |
| cosine_recall@3     | 0.8314     |
| cosine_recall@5     | 0.8729     |
| cosine_recall@10    | 0.9171     |
| **cosine_ndcg@10**  | **0.8091** |
| cosine_mrr@10       | 0.7745     |
| cosine_map@100      | 0.7781     |

#### Information Retrieval

* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
  ```json
  {
      "truncate_dim": 128
  }
  ```

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.6771     |
| cosine_accuracy@3   | 0.8171     |
| cosine_accuracy@5   | 0.8643     |
| cosine_accuracy@10  | 0.9171     |
| cosine_precision@1  | 0.6771     |
| cosine_precision@3  | 0.2724     |
| cosine_precision@5  | 0.1729     |
| cosine_precision@10 | 0.0917     |
| cosine_recall@1     | 0.6771     |
| cosine_recall@3     | 0.8171     |
| cosine_recall@5     | 0.8643     |
| cosine_recall@10    | 0.9171     |
| **cosine_ndcg@10**  | **0.7978** |
| cosine_mrr@10       | 0.7596     |
| cosine_map@100      | 0.7626     |

#### Information Retrieval

* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
  ```json
  {
      "truncate_dim": 64
  }
  ```

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.66       |
| cosine_accuracy@3   | 0.8014     |
| cosine_accuracy@5   | 0.8543     |
| cosine_accuracy@10  | 0.9029     |
| cosine_precision@1  | 0.66       |
| cosine_precision@3  | 0.2671     |
| cosine_precision@5  | 0.1709     |
| cosine_precision@10 | 0.0903     |
| cosine_recall@1     | 0.66       |
| cosine_recall@3     | 0.8014     |
| cosine_recall@5     | 0.8543     |
| cosine_recall@10    | 0.9029     |
| **cosine_ndcg@10**  | **0.7797** |
| cosine_mrr@10       | 0.7405     |
| cosine_map@100      | 0.7439     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### json

* Dataset: json
* Size: 6,300 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
  |         | positive                                                                            | anchor                                                                            |
  |:--------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                              | string                                                                            |
  | details | <ul><li>min: 10 tokens</li><li>mean: 47.77 tokens</li><li>max: 439 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 20.48 tokens</li><li>max: 45 tokens</li></ul> |
* Samples:
  | positive                                                                                                                                                                                                                        | anchor                                                                                                                                                   |
  |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Return on investment (ROI) | 12.7 | % | | 14.9 | %</code>                                                                                                                                                                 | <code>What was the return on investment (ROI) for the average invested capital in the latest period and how did this compare to the prior period?</code> |
  | <code>According to the terms of the Senior Credit Facilities, cash amounts exceeding $175 million can be deducted from the total debt in the leverage ratio calculation, though this is subject to certain restrictions.</code> | <code>How does the Senior Credit Facilities' treatment of cash affect the calculation of the leverage ratio?</code>                                      |
  | <code>In 2023, approximately 67% of the total U.S. dialysis patient service revenues were generated from government-based programs.</code>                                                                                      | <code>What percentage of the total U.S. dialysis patient service revenues were generated from government-based programs in 2023?</code>                  |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 8
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: False
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 8
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 8
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: False
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch   | Step    | Training Loss | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
|:-------:|:-------:|:-------------:|:----------------------:|:----------------------:|:---------------------:|
| 0.1015  | 10      | 4.9287        | -                      | -                      | -                     |
| 0.2030  | 20      | 3.7753        | -                      | -                      | -                     |
| 0.3046  | 30      | 2.7807        | -                      | -                      | -                     |
| 0.4061  | 40      | 2.6642        | -                      | -                      | -                     |
| 0.5076  | 50      | 1.8158        | -                      | -                      | -                     |
| 0.6091  | 60      | 1.2895        | -                      | -                      | -                     |
| 0.7107  | 70      | 1.356         | -                      | -                      | -                     |
| 0.8122  | 80      | 1.2217        | -                      | -                      | -                     |
| 0.9137  | 90      | 1.2548        | -                      | -                      | -                     |
| 1.0     | 99      | -             | 0.7949                 | 0.7853                 | 0.7609                |
| 1.0102  | 100     | 1.1693        | -                      | -                      | -                     |
| 1.1117  | 110     | 1.0828        | -                      | -                      | -                     |
| 1.2132  | 120     | 0.9545        | -                      | -                      | -                     |
| 1.3147  | 130     | 1.1774        | -                      | -                      | -                     |
| 1.4162  | 140     | 0.55          | -                      | -                      | -                     |
| 1.5178  | 150     | 0.891         | -                      | -                      | -                     |
| 1.6193  | 160     | 0.9661        | -                      | -                      | -                     |
| 1.7208  | 170     | 0.9355        | -                      | -                      | -                     |
| 1.8223  | 180     | 0.9888        | -                      | -                      | -                     |
| 1.9239  | 190     | 1.0157        | -                      | -                      | -                     |
| 2.0     | 198     | -             | 0.8067                 | 0.7945                 | 0.7742                |
| 2.0203  | 200     | 0.7944        | -                      | -                      | -                     |
| 2.1218  | 210     | 0.5637        | -                      | -                      | -                     |
| 2.2234  | 220     | 0.3895        | -                      | -                      | -                     |
| 2.3249  | 230     | 1.0888        | -                      | -                      | -                     |
| 2.4264  | 240     | 0.8784        | -                      | -                      | -                     |
| 2.5279  | 250     | 0.5746        | -                      | -                      | -                     |
| 2.6294  | 260     | 1.064         | -                      | -                      | -                     |
| 2.7310  | 270     | 0.8036        | -                      | -                      | -                     |
| 2.8325  | 280     | 0.6005        | -                      | -                      | -                     |
| 2.9340  | 290     | 0.7571        | -                      | -                      | -                     |
| **3.0** | **297** | **-**         | **0.81**               | **0.7982**             | **0.7785**            |
| 3.0305  | 300     | 0.6178        | -                      | -                      | -                     |
| 3.1320  | 310     | 0.5013        | -                      | -                      | -                     |
| 3.2335  | 320     | 0.7171        | -                      | -                      | -                     |
| 3.3350  | 330     | 0.5717        | -                      | -                      | -                     |
| 3.4365  | 340     | 0.7031        | -                      | -                      | -                     |
| 3.5381  | 350     | 0.8601        | -                      | -                      | -                     |
| 3.6396  | 360     | 0.597         | -                      | -                      | -                     |
| 3.7411  | 370     | 0.4611        | -                      | -                      | -                     |
| 3.8426  | 380     | 0.6503        | -                      | -                      | -                     |
| 3.9442  | 390     | 0.3176        | -                      | -                      | -                     |
| 4.0     | 396     | -             | 0.8091                 | 0.7978                 | 0.7797                |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.11.13
- Sentence Transformers: 4.1.0
- Transformers: 4.52.4
- PyTorch: 2.6.0+cu124
- Accelerate: 1.8.1
- Datasets: 3.6.0
- Tokenizers: 0.21.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->