BGE base Financial Matryoshka

This is a sentence-transformers model finetuned from BAAI/bge-small-en-v1.5 on the json dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-small-en-v1.5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 384 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • json
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the ๐Ÿค— Hub
model = SentenceTransformer("MistyDragon/bge-small-financial-matryoshka")
# Run inference
sentences = [
    'Caterpillar Insurance Co. Ltd. is registered as a Class 2 (General Business) and Class B (Long-Term) insurer with the Bermuda Monetary Authority.',
    'What types of insurance licenses does Caterpillar Insurance Co. Ltd. hold in Bermuda?',
    "What is indicated by 'Item 8' in a financial document?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.6986
cosine_accuracy@3 0.8314
cosine_accuracy@5 0.8729
cosine_accuracy@10 0.9171
cosine_precision@1 0.6986
cosine_precision@3 0.2771
cosine_precision@5 0.1746
cosine_precision@10 0.0917
cosine_recall@1 0.6986
cosine_recall@3 0.8314
cosine_recall@5 0.8729
cosine_recall@10 0.9171
cosine_ndcg@10 0.8091
cosine_mrr@10 0.7745
cosine_map@100 0.7781

Information Retrieval

Metric Value
cosine_accuracy@1 0.6771
cosine_accuracy@3 0.8171
cosine_accuracy@5 0.8643
cosine_accuracy@10 0.9171
cosine_precision@1 0.6771
cosine_precision@3 0.2724
cosine_precision@5 0.1729
cosine_precision@10 0.0917
cosine_recall@1 0.6771
cosine_recall@3 0.8171
cosine_recall@5 0.8643
cosine_recall@10 0.9171
cosine_ndcg@10 0.7978
cosine_mrr@10 0.7596
cosine_map@100 0.7626

Information Retrieval

Metric Value
cosine_accuracy@1 0.66
cosine_accuracy@3 0.8014
cosine_accuracy@5 0.8543
cosine_accuracy@10 0.9029
cosine_precision@1 0.66
cosine_precision@3 0.2671
cosine_precision@5 0.1709
cosine_precision@10 0.0903
cosine_recall@1 0.66
cosine_recall@3 0.8014
cosine_recall@5 0.8543
cosine_recall@10 0.9029
cosine_ndcg@10 0.7797
cosine_mrr@10 0.7405
cosine_map@100 0.7439

Training Details

Training Dataset

json

  • Dataset: json
  • Size: 6,300 training samples
  • Columns: positive and anchor
  • Approximate statistics based on the first 1000 samples:
    positive anchor
    type string string
    details
    • min: 10 tokens
    • mean: 47.77 tokens
    • max: 439 tokens
    • min: 8 tokens
    • mean: 20.48 tokens
    • max: 45 tokens
  • Samples:
    positive anchor
    Return on investment (ROI) 12.7
    According to the terms of the Senior Credit Facilities, cash amounts exceeding $175 million can be deducted from the total debt in the leverage ratio calculation, though this is subject to certain restrictions. How does the Senior Credit Facilities' treatment of cash affect the calculation of the leverage ratio?
    In 2023, approximately 67% of the total U.S. dialysis patient service revenues were generated from government-based programs. What percentage of the total U.S. dialysis patient service revenues were generated from government-based programs in 2023?
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 8
  • learning_rate: 2e-05
  • num_train_epochs: 4
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • bf16: True
  • tf32: False
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 8
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 8
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: False
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss dim_256_cosine_ndcg@10 dim_128_cosine_ndcg@10 dim_64_cosine_ndcg@10
0.1015 10 4.9287 - - -
0.2030 20 3.7753 - - -
0.3046 30 2.7807 - - -
0.4061 40 2.6642 - - -
0.5076 50 1.8158 - - -
0.6091 60 1.2895 - - -
0.7107 70 1.356 - - -
0.8122 80 1.2217 - - -
0.9137 90 1.2548 - - -
1.0 99 - 0.7949 0.7853 0.7609
1.0102 100 1.1693 - - -
1.1117 110 1.0828 - - -
1.2132 120 0.9545 - - -
1.3147 130 1.1774 - - -
1.4162 140 0.55 - - -
1.5178 150 0.891 - - -
1.6193 160 0.9661 - - -
1.7208 170 0.9355 - - -
1.8223 180 0.9888 - - -
1.9239 190 1.0157 - - -
2.0 198 - 0.8067 0.7945 0.7742
2.0203 200 0.7944 - - -
2.1218 210 0.5637 - - -
2.2234 220 0.3895 - - -
2.3249 230 1.0888 - - -
2.4264 240 0.8784 - - -
2.5279 250 0.5746 - - -
2.6294 260 1.064 - - -
2.7310 270 0.8036 - - -
2.8325 280 0.6005 - - -
2.9340 290 0.7571 - - -
3.0 297 - 0.81 0.7982 0.7785
3.0305 300 0.6178 - - -
3.1320 310 0.5013 - - -
3.2335 320 0.7171 - - -
3.3350 330 0.5717 - - -
3.4365 340 0.7031 - - -
3.5381 350 0.8601 - - -
3.6396 360 0.597 - - -
3.7411 370 0.4611 - - -
3.8426 380 0.6503 - - -
3.9442 390 0.3176 - - -
4.0 396 - 0.8091 0.7978 0.7797
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.11.13
  • Sentence Transformers: 4.1.0
  • Transformers: 4.52.4
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.8.1
  • Datasets: 3.6.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
6
Safetensors
Model size
33.4M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for MistyDragon/bge-small-financial-matryoshka

Finetuned
(199)
this model

Evaluation results