BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-small-en-v1.5 on the json dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-small-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("MistyDragon/bge-small-financial-matryoshka")
# Run inference
sentences = [
'Caterpillar Insurance Co. Ltd. is registered as a Class 2 (General Business) and Class B (Long-Term) insurer with the Bermuda Monetary Authority.',
'What types of insurance licenses does Caterpillar Insurance Co. Ltd. hold in Bermuda?',
"What is indicated by 'Item 8' in a financial document?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_256
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 256 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6986 |
cosine_accuracy@3 | 0.8314 |
cosine_accuracy@5 | 0.8729 |
cosine_accuracy@10 | 0.9171 |
cosine_precision@1 | 0.6986 |
cosine_precision@3 | 0.2771 |
cosine_precision@5 | 0.1746 |
cosine_precision@10 | 0.0917 |
cosine_recall@1 | 0.6986 |
cosine_recall@3 | 0.8314 |
cosine_recall@5 | 0.8729 |
cosine_recall@10 | 0.9171 |
cosine_ndcg@10 | 0.8091 |
cosine_mrr@10 | 0.7745 |
cosine_map@100 | 0.7781 |
Information Retrieval
- Dataset:
dim_128
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 128 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6771 |
cosine_accuracy@3 | 0.8171 |
cosine_accuracy@5 | 0.8643 |
cosine_accuracy@10 | 0.9171 |
cosine_precision@1 | 0.6771 |
cosine_precision@3 | 0.2724 |
cosine_precision@5 | 0.1729 |
cosine_precision@10 | 0.0917 |
cosine_recall@1 | 0.6771 |
cosine_recall@3 | 0.8171 |
cosine_recall@5 | 0.8643 |
cosine_recall@10 | 0.9171 |
cosine_ndcg@10 | 0.7978 |
cosine_mrr@10 | 0.7596 |
cosine_map@100 | 0.7626 |
Information Retrieval
- Dataset:
dim_64
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 64 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.66 |
cosine_accuracy@3 | 0.8014 |
cosine_accuracy@5 | 0.8543 |
cosine_accuracy@10 | 0.9029 |
cosine_precision@1 | 0.66 |
cosine_precision@3 | 0.2671 |
cosine_precision@5 | 0.1709 |
cosine_precision@10 | 0.0903 |
cosine_recall@1 | 0.66 |
cosine_recall@3 | 0.8014 |
cosine_recall@5 | 0.8543 |
cosine_recall@10 | 0.9029 |
cosine_ndcg@10 | 0.7797 |
cosine_mrr@10 | 0.7405 |
cosine_map@100 | 0.7439 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 6,300 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 10 tokens
- mean: 47.77 tokens
- max: 439 tokens
- min: 8 tokens
- mean: 20.48 tokens
- max: 45 tokens
- Samples:
positive anchor Return on investment (ROI)
12.7 According to the terms of the Senior Credit Facilities, cash amounts exceeding $175 million can be deducted from the total debt in the leverage ratio calculation, though this is subject to certain restrictions.
How does the Senior Credit Facilities' treatment of cash affect the calculation of the leverage ratio?
In 2023, approximately 67% of the total U.S. dialysis patient service revenues were generated from government-based programs.
What percentage of the total U.S. dialysis patient service revenues were generated from government-based programs in 2023?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_eval_batch_size
: 16gradient_accumulation_steps
: 8learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Falseload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 8per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 8eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Falselocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
---|---|---|---|---|---|
0.1015 | 10 | 4.9287 | - | - | - |
0.2030 | 20 | 3.7753 | - | - | - |
0.3046 | 30 | 2.7807 | - | - | - |
0.4061 | 40 | 2.6642 | - | - | - |
0.5076 | 50 | 1.8158 | - | - | - |
0.6091 | 60 | 1.2895 | - | - | - |
0.7107 | 70 | 1.356 | - | - | - |
0.8122 | 80 | 1.2217 | - | - | - |
0.9137 | 90 | 1.2548 | - | - | - |
1.0 | 99 | - | 0.7949 | 0.7853 | 0.7609 |
1.0102 | 100 | 1.1693 | - | - | - |
1.1117 | 110 | 1.0828 | - | - | - |
1.2132 | 120 | 0.9545 | - | - | - |
1.3147 | 130 | 1.1774 | - | - | - |
1.4162 | 140 | 0.55 | - | - | - |
1.5178 | 150 | 0.891 | - | - | - |
1.6193 | 160 | 0.9661 | - | - | - |
1.7208 | 170 | 0.9355 | - | - | - |
1.8223 | 180 | 0.9888 | - | - | - |
1.9239 | 190 | 1.0157 | - | - | - |
2.0 | 198 | - | 0.8067 | 0.7945 | 0.7742 |
2.0203 | 200 | 0.7944 | - | - | - |
2.1218 | 210 | 0.5637 | - | - | - |
2.2234 | 220 | 0.3895 | - | - | - |
2.3249 | 230 | 1.0888 | - | - | - |
2.4264 | 240 | 0.8784 | - | - | - |
2.5279 | 250 | 0.5746 | - | - | - |
2.6294 | 260 | 1.064 | - | - | - |
2.7310 | 270 | 0.8036 | - | - | - |
2.8325 | 280 | 0.6005 | - | - | - |
2.9340 | 290 | 0.7571 | - | - | - |
3.0 | 297 | - | 0.81 | 0.7982 | 0.7785 |
3.0305 | 300 | 0.6178 | - | - | - |
3.1320 | 310 | 0.5013 | - | - | - |
3.2335 | 320 | 0.7171 | - | - | - |
3.3350 | 330 | 0.5717 | - | - | - |
3.4365 | 340 | 0.7031 | - | - | - |
3.5381 | 350 | 0.8601 | - | - | - |
3.6396 | 360 | 0.597 | - | - | - |
3.7411 | 370 | 0.4611 | - | - | - |
3.8426 | 380 | 0.6503 | - | - | - |
3.9442 | 390 | 0.3176 | - | - | - |
4.0 | 396 | - | 0.8091 | 0.7978 | 0.7797 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.13
- Sentence Transformers: 4.1.0
- Transformers: 4.52.4
- PyTorch: 2.6.0+cu124
- Accelerate: 1.8.1
- Datasets: 3.6.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 6
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for MistyDragon/bge-small-financial-matryoshka
Base model
BAAI/bge-small-en-v1.5Evaluation results
- Cosine Accuracy@1 on dim 256self-reported0.699
- Cosine Accuracy@3 on dim 256self-reported0.831
- Cosine Accuracy@5 on dim 256self-reported0.873
- Cosine Accuracy@10 on dim 256self-reported0.917
- Cosine Precision@1 on dim 256self-reported0.699
- Cosine Precision@3 on dim 256self-reported0.277
- Cosine Precision@5 on dim 256self-reported0.175
- Cosine Precision@10 on dim 256self-reported0.092
- Cosine Recall@1 on dim 256self-reported0.699
- Cosine Recall@3 on dim 256self-reported0.831