MistyDragon's picture
Add new SentenceTransformer model
4f188e5 verified
metadata
language:
  - en
license: apache-2.0
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:6300
  - loss:MatryoshkaLoss
  - loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-small-en-v1.5
widget:
  - source_sentence: >-
      During the year ended December 31, 2023, cash flows used in investing
      activities also included proceeds from the sale of our investment in Saudi
      Cinema Company, LLC of $30.0 million.
    sentences:
      - >-
        What are some of the risks associated with the company's ability to
        maintain its concession in Macao and gaming license in Singapore?
      - >-
        What were the proceeds from the sale of investment in Saudi Cinema
        Company, LLC during 2023?
      - >-
        What financial impact did the change in accounting estimate regarding
        server and network equipment have on Microsoft in fiscal year 2023?
  - source_sentence: >-
      During 2023, U.S. sales of natural gas averaged 4.7 billion cubic feet per
      day.
    sentences:
      - >-
        What constitutes a material weakness in internal control over financial
        reporting, according to the criteria set by COSO?
      - >-
        What was Chevron's total average daily sales of natural gas in the U.S.
        in 2023?
      - >-
        What total amount of assets were measured at fair value as of January
        31, 2022, and how is this divided across the fair value hierarchy
        levels?
  - source_sentence: >-
      The net cash provided by operating activities during fiscal 2023 was
      related to net income of $208 million, adjusted for non-cash items
      including $3.8 billion of depreciation and amortization and $3.3 billion
      related to stock-based compensation expense.
    sentences:
      - What was the net cash provided by operating activities for fiscal 2023?
      - >-
        How does Nike protect its intellectual property rights against
        infringement?
      - >-
        What specific feature does the Peloton Bike+ offer regarding workout
        experience?
  - source_sentence: >-
      Year-over-Year Changes in Operating Results for 2023 compared to 2022
      showed a decrease of $1,858 million for FedEx Express, an increase of $498
      million for FedEx Ground, and an increase of $262 million for FedEx
      Freight.
    sentences:
      - >-
        How did comparable sales growth, including fuel, contribute to net sales
        for Sam's Club in fiscal 2023?
      - >-
        What is the role of Level 1, Level 2, and Level 3 inputs in the fair
        value hierarchy according to ASC 820?
      - >-
        What were the operating results changes year-over-year for the FedEx
        Express, Ground, and Freight segments in 2023 compared to 2022?
  - source_sentence: >-
      Caterpillar Insurance Co. Ltd. is registered as a Class 2 (General
      Business) and Class B (Long-Term) insurer with the Bermuda Monetary
      Authority.
    sentences:
      - >-
        What types of insurance licenses does Caterpillar Insurance Co. Ltd.
        hold in Bermuda?
      - What is indicated by 'Item 8' in a financial document?
      - What does Gross Merchandise Volume (GMV) represent in financial terms?
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
model-index:
  - name: BGE base Financial Matryoshka
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 256
          type: dim_256
        metrics:
          - type: cosine_accuracy@1
            value: 0.6985714285714286
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8314285714285714
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8728571428571429
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9171428571428571
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6985714285714286
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.27714285714285714
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.17457142857142854
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09171428571428569
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6985714285714286
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8314285714285714
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8728571428571429
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9171428571428571
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.8091312862711041
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7744716553287979
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.778107400978576
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 128
          type: dim_128
        metrics:
          - type: cosine_accuracy@1
            value: 0.6771428571428572
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8171428571428572
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8642857142857143
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9171428571428571
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6771428571428572
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2723809523809524
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.17285714285714285
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09171428571428569
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6771428571428572
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8171428571428572
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8642857142857143
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9171428571428571
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7978178514618532
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7596043083900226
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7625576612954725
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 64
          type: dim_64
        metrics:
          - type: cosine_accuracy@1
            value: 0.66
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8014285714285714
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8542857142857143
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9028571428571428
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.66
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2671428571428571
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.17085714285714285
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09028571428571427
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.66
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8014285714285714
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8542857142857143
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9028571428571428
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7797125058125993
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7404512471655325
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7439184556821083
            name: Cosine Map@100

BGE base Financial Matryoshka

This is a sentence-transformers model finetuned from BAAI/bge-small-en-v1.5 on the json dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-small-en-v1.5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 384 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • json
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("MistyDragon/bge-small-financial-matryoshka")
# Run inference
sentences = [
    'Caterpillar Insurance Co. Ltd. is registered as a Class 2 (General Business) and Class B (Long-Term) insurer with the Bermuda Monetary Authority.',
    'What types of insurance licenses does Caterpillar Insurance Co. Ltd. hold in Bermuda?',
    "What is indicated by 'Item 8' in a financial document?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.6986
cosine_accuracy@3 0.8314
cosine_accuracy@5 0.8729
cosine_accuracy@10 0.9171
cosine_precision@1 0.6986
cosine_precision@3 0.2771
cosine_precision@5 0.1746
cosine_precision@10 0.0917
cosine_recall@1 0.6986
cosine_recall@3 0.8314
cosine_recall@5 0.8729
cosine_recall@10 0.9171
cosine_ndcg@10 0.8091
cosine_mrr@10 0.7745
cosine_map@100 0.7781

Information Retrieval

Metric Value
cosine_accuracy@1 0.6771
cosine_accuracy@3 0.8171
cosine_accuracy@5 0.8643
cosine_accuracy@10 0.9171
cosine_precision@1 0.6771
cosine_precision@3 0.2724
cosine_precision@5 0.1729
cosine_precision@10 0.0917
cosine_recall@1 0.6771
cosine_recall@3 0.8171
cosine_recall@5 0.8643
cosine_recall@10 0.9171
cosine_ndcg@10 0.7978
cosine_mrr@10 0.7596
cosine_map@100 0.7626

Information Retrieval

Metric Value
cosine_accuracy@1 0.66
cosine_accuracy@3 0.8014
cosine_accuracy@5 0.8543
cosine_accuracy@10 0.9029
cosine_precision@1 0.66
cosine_precision@3 0.2671
cosine_precision@5 0.1709
cosine_precision@10 0.0903
cosine_recall@1 0.66
cosine_recall@3 0.8014
cosine_recall@5 0.8543
cosine_recall@10 0.9029
cosine_ndcg@10 0.7797
cosine_mrr@10 0.7405
cosine_map@100 0.7439

Training Details

Training Dataset

json

  • Dataset: json
  • Size: 6,300 training samples
  • Columns: positive and anchor
  • Approximate statistics based on the first 1000 samples:
    positive anchor
    type string string
    details
    • min: 10 tokens
    • mean: 47.77 tokens
    • max: 439 tokens
    • min: 8 tokens
    • mean: 20.48 tokens
    • max: 45 tokens
  • Samples:
    positive anchor
    Return on investment (ROI) 12.7
    According to the terms of the Senior Credit Facilities, cash amounts exceeding $175 million can be deducted from the total debt in the leverage ratio calculation, though this is subject to certain restrictions. How does the Senior Credit Facilities' treatment of cash affect the calculation of the leverage ratio?
    In 2023, approximately 67% of the total U.S. dialysis patient service revenues were generated from government-based programs. What percentage of the total U.S. dialysis patient service revenues were generated from government-based programs in 2023?
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 8
  • learning_rate: 2e-05
  • num_train_epochs: 4
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • bf16: True
  • tf32: False
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 8
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 8
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: False
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss dim_256_cosine_ndcg@10 dim_128_cosine_ndcg@10 dim_64_cosine_ndcg@10
0.1015 10 4.9287 - - -
0.2030 20 3.7753 - - -
0.3046 30 2.7807 - - -
0.4061 40 2.6642 - - -
0.5076 50 1.8158 - - -
0.6091 60 1.2895 - - -
0.7107 70 1.356 - - -
0.8122 80 1.2217 - - -
0.9137 90 1.2548 - - -
1.0 99 - 0.7949 0.7853 0.7609
1.0102 100 1.1693 - - -
1.1117 110 1.0828 - - -
1.2132 120 0.9545 - - -
1.3147 130 1.1774 - - -
1.4162 140 0.55 - - -
1.5178 150 0.891 - - -
1.6193 160 0.9661 - - -
1.7208 170 0.9355 - - -
1.8223 180 0.9888 - - -
1.9239 190 1.0157 - - -
2.0 198 - 0.8067 0.7945 0.7742
2.0203 200 0.7944 - - -
2.1218 210 0.5637 - - -
2.2234 220 0.3895 - - -
2.3249 230 1.0888 - - -
2.4264 240 0.8784 - - -
2.5279 250 0.5746 - - -
2.6294 260 1.064 - - -
2.7310 270 0.8036 - - -
2.8325 280 0.6005 - - -
2.9340 290 0.7571 - - -
3.0 297 - 0.81 0.7982 0.7785
3.0305 300 0.6178 - - -
3.1320 310 0.5013 - - -
3.2335 320 0.7171 - - -
3.3350 330 0.5717 - - -
3.4365 340 0.7031 - - -
3.5381 350 0.8601 - - -
3.6396 360 0.597 - - -
3.7411 370 0.4611 - - -
3.8426 380 0.6503 - - -
3.9442 390 0.3176 - - -
4.0 396 - 0.8091 0.7978 0.7797
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.11.13
  • Sentence Transformers: 4.1.0
  • Transformers: 4.52.4
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.8.1
  • Datasets: 3.6.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}