metadata
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-small-en-v1.5
widget:
- source_sentence: >-
During the year ended December 31, 2023, cash flows used in investing
activities also included proceeds from the sale of our investment in Saudi
Cinema Company, LLC of $30.0 million.
sentences:
- >-
What are some of the risks associated with the company's ability to
maintain its concession in Macao and gaming license in Singapore?
- >-
What were the proceeds from the sale of investment in Saudi Cinema
Company, LLC during 2023?
- >-
What financial impact did the change in accounting estimate regarding
server and network equipment have on Microsoft in fiscal year 2023?
- source_sentence: >-
During 2023, U.S. sales of natural gas averaged 4.7 billion cubic feet per
day.
sentences:
- >-
What constitutes a material weakness in internal control over financial
reporting, according to the criteria set by COSO?
- >-
What was Chevron's total average daily sales of natural gas in the U.S.
in 2023?
- >-
What total amount of assets were measured at fair value as of January
31, 2022, and how is this divided across the fair value hierarchy
levels?
- source_sentence: >-
The net cash provided by operating activities during fiscal 2023 was
related to net income of $208 million, adjusted for non-cash items
including $3.8 billion of depreciation and amortization and $3.3 billion
related to stock-based compensation expense.
sentences:
- What was the net cash provided by operating activities for fiscal 2023?
- >-
How does Nike protect its intellectual property rights against
infringement?
- >-
What specific feature does the Peloton Bike+ offer regarding workout
experience?
- source_sentence: >-
Year-over-Year Changes in Operating Results for 2023 compared to 2022
showed a decrease of $1,858 million for FedEx Express, an increase of $498
million for FedEx Ground, and an increase of $262 million for FedEx
Freight.
sentences:
- >-
How did comparable sales growth, including fuel, contribute to net sales
for Sam's Club in fiscal 2023?
- >-
What is the role of Level 1, Level 2, and Level 3 inputs in the fair
value hierarchy according to ASC 820?
- >-
What were the operating results changes year-over-year for the FedEx
Express, Ground, and Freight segments in 2023 compared to 2022?
- source_sentence: >-
Caterpillar Insurance Co. Ltd. is registered as a Class 2 (General
Business) and Class B (Long-Term) insurer with the Bermuda Monetary
Authority.
sentences:
- >-
What types of insurance licenses does Caterpillar Insurance Co. Ltd.
hold in Bermuda?
- What is indicated by 'Item 8' in a financial document?
- What does Gross Merchandise Volume (GMV) represent in financial terms?
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.6985714285714286
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8314285714285714
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8728571428571429
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9171428571428571
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6985714285714286
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27714285714285714
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17457142857142854
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09171428571428569
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6985714285714286
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8314285714285714
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8728571428571429
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9171428571428571
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8091312862711041
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7744716553287979
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.778107400978576
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.6771428571428572
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8171428571428572
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8642857142857143
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9171428571428571
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6771428571428572
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2723809523809524
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17285714285714285
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09171428571428569
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6771428571428572
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8171428571428572
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8642857142857143
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9171428571428571
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7978178514618532
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7596043083900226
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7625576612954725
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.66
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8014285714285714
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8542857142857143
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9028571428571428
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.66
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2671428571428571
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17085714285714285
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09028571428571427
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.66
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8014285714285714
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8542857142857143
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9028571428571428
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7797125058125993
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7404512471655325
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7439184556821083
name: Cosine Map@100
BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-small-en-v1.5 on the json dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-small-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("MistyDragon/bge-small-financial-matryoshka")
# Run inference
sentences = [
'Caterpillar Insurance Co. Ltd. is registered as a Class 2 (General Business) and Class B (Long-Term) insurer with the Bermuda Monetary Authority.',
'What types of insurance licenses does Caterpillar Insurance Co. Ltd. hold in Bermuda?',
"What is indicated by 'Item 8' in a financial document?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_256
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 256 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6986 |
cosine_accuracy@3 | 0.8314 |
cosine_accuracy@5 | 0.8729 |
cosine_accuracy@10 | 0.9171 |
cosine_precision@1 | 0.6986 |
cosine_precision@3 | 0.2771 |
cosine_precision@5 | 0.1746 |
cosine_precision@10 | 0.0917 |
cosine_recall@1 | 0.6986 |
cosine_recall@3 | 0.8314 |
cosine_recall@5 | 0.8729 |
cosine_recall@10 | 0.9171 |
cosine_ndcg@10 | 0.8091 |
cosine_mrr@10 | 0.7745 |
cosine_map@100 | 0.7781 |
Information Retrieval
- Dataset:
dim_128
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 128 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6771 |
cosine_accuracy@3 | 0.8171 |
cosine_accuracy@5 | 0.8643 |
cosine_accuracy@10 | 0.9171 |
cosine_precision@1 | 0.6771 |
cosine_precision@3 | 0.2724 |
cosine_precision@5 | 0.1729 |
cosine_precision@10 | 0.0917 |
cosine_recall@1 | 0.6771 |
cosine_recall@3 | 0.8171 |
cosine_recall@5 | 0.8643 |
cosine_recall@10 | 0.9171 |
cosine_ndcg@10 | 0.7978 |
cosine_mrr@10 | 0.7596 |
cosine_map@100 | 0.7626 |
Information Retrieval
- Dataset:
dim_64
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 64 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.66 |
cosine_accuracy@3 | 0.8014 |
cosine_accuracy@5 | 0.8543 |
cosine_accuracy@10 | 0.9029 |
cosine_precision@1 | 0.66 |
cosine_precision@3 | 0.2671 |
cosine_precision@5 | 0.1709 |
cosine_precision@10 | 0.0903 |
cosine_recall@1 | 0.66 |
cosine_recall@3 | 0.8014 |
cosine_recall@5 | 0.8543 |
cosine_recall@10 | 0.9029 |
cosine_ndcg@10 | 0.7797 |
cosine_mrr@10 | 0.7405 |
cosine_map@100 | 0.7439 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 6,300 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 10 tokens
- mean: 47.77 tokens
- max: 439 tokens
- min: 8 tokens
- mean: 20.48 tokens
- max: 45 tokens
- Samples:
positive anchor Return on investment (ROI)
12.7 According to the terms of the Senior Credit Facilities, cash amounts exceeding $175 million can be deducted from the total debt in the leverage ratio calculation, though this is subject to certain restrictions.
How does the Senior Credit Facilities' treatment of cash affect the calculation of the leverage ratio?
In 2023, approximately 67% of the total U.S. dialysis patient service revenues were generated from government-based programs.
What percentage of the total U.S. dialysis patient service revenues were generated from government-based programs in 2023?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_eval_batch_size
: 16gradient_accumulation_steps
: 8learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Falseload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 8per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 8eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Falselocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
---|---|---|---|---|---|
0.1015 | 10 | 4.9287 | - | - | - |
0.2030 | 20 | 3.7753 | - | - | - |
0.3046 | 30 | 2.7807 | - | - | - |
0.4061 | 40 | 2.6642 | - | - | - |
0.5076 | 50 | 1.8158 | - | - | - |
0.6091 | 60 | 1.2895 | - | - | - |
0.7107 | 70 | 1.356 | - | - | - |
0.8122 | 80 | 1.2217 | - | - | - |
0.9137 | 90 | 1.2548 | - | - | - |
1.0 | 99 | - | 0.7949 | 0.7853 | 0.7609 |
1.0102 | 100 | 1.1693 | - | - | - |
1.1117 | 110 | 1.0828 | - | - | - |
1.2132 | 120 | 0.9545 | - | - | - |
1.3147 | 130 | 1.1774 | - | - | - |
1.4162 | 140 | 0.55 | - | - | - |
1.5178 | 150 | 0.891 | - | - | - |
1.6193 | 160 | 0.9661 | - | - | - |
1.7208 | 170 | 0.9355 | - | - | - |
1.8223 | 180 | 0.9888 | - | - | - |
1.9239 | 190 | 1.0157 | - | - | - |
2.0 | 198 | - | 0.8067 | 0.7945 | 0.7742 |
2.0203 | 200 | 0.7944 | - | - | - |
2.1218 | 210 | 0.5637 | - | - | - |
2.2234 | 220 | 0.3895 | - | - | - |
2.3249 | 230 | 1.0888 | - | - | - |
2.4264 | 240 | 0.8784 | - | - | - |
2.5279 | 250 | 0.5746 | - | - | - |
2.6294 | 260 | 1.064 | - | - | - |
2.7310 | 270 | 0.8036 | - | - | - |
2.8325 | 280 | 0.6005 | - | - | - |
2.9340 | 290 | 0.7571 | - | - | - |
3.0 | 297 | - | 0.81 | 0.7982 | 0.7785 |
3.0305 | 300 | 0.6178 | - | - | - |
3.1320 | 310 | 0.5013 | - | - | - |
3.2335 | 320 | 0.7171 | - | - | - |
3.3350 | 330 | 0.5717 | - | - | - |
3.4365 | 340 | 0.7031 | - | - | - |
3.5381 | 350 | 0.8601 | - | - | - |
3.6396 | 360 | 0.597 | - | - | - |
3.7411 | 370 | 0.4611 | - | - | - |
3.8426 | 380 | 0.6503 | - | - | - |
3.9442 | 390 | 0.3176 | - | - | - |
4.0 | 396 | - | 0.8091 | 0.7978 | 0.7797 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.13
- Sentence Transformers: 4.1.0
- Transformers: 4.52.4
- PyTorch: 2.6.0+cu124
- Accelerate: 1.8.1
- Datasets: 3.6.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}