cat_dog_classifier_with_small_datasest

This model is a fine-tuned version of microsoft/resnet-50 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1369
  • Accuracy: 0.95

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 70 0.5422 0.8571
No log 2.0 140 0.5221 0.8786
No log 3.0 210 0.4977 0.8571
No log 4.0 280 0.4617 0.8786
No log 5.0 350 0.3932 0.9143
No log 6.0 420 0.3411 0.9143
No log 7.0 490 0.2884 0.9143
0.4971 8.0 560 0.2429 0.9286
0.4971 9.0 630 0.2151 0.9429
0.4971 10.0 700 0.1962 0.9286
0.4971 11.0 770 0.1727 0.9357
0.4971 12.0 840 0.1676 0.95
0.4971 13.0 910 0.1764 0.9286
0.4971 14.0 980 0.1565 0.9429
0.2878 15.0 1050 0.1578 0.9429
0.2878 16.0 1120 0.1577 0.9429
0.2878 17.0 1190 0.1393 0.9429
0.2878 18.0 1260 0.1472 0.9429
0.2878 19.0 1330 0.1315 0.95
0.2878 20.0 1400 0.1369 0.95

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.4.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
93
Safetensors
Model size
23.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for MoGHenry/cat_dog_classifier_with_small_datasest

Finetuned
(143)
this model

Evaluation results