ner-named-entity-recgnition
This model is a fine-tuned version of Mohamedfasil/ner-named-entity-recgnition on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1820
- Precision: 0.6471
- Recall: 0.7333
- F1: 0.6875
- Accuracy: 0.9538
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 14 | 0.1878 | 0.8 | 0.8 | 0.8000 | 0.9580 |
No log | 2.0 | 28 | 0.2254 | 0.8571 | 0.8 | 0.8276 | 0.9706 |
No log | 3.0 | 42 | 0.2056 | 0.6667 | 0.6667 | 0.6667 | 0.9118 |
No log | 4.0 | 56 | 0.1877 | 0.5556 | 0.6667 | 0.6061 | 0.9370 |
No log | 5.0 | 70 | 0.1820 | 0.6471 | 0.7333 | 0.6875 | 0.9538 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
- Downloads last month
- 1
Model tree for Mohamedfasil/ner-named-entity-recgnition
Unable to build the model tree, the base model loops to the model itself. Learn more.