PPO Agent playing LunarLander-v2

This is a trained model of a PPO agent playing LunarLander-v2 using the stable-baselines3 library.

Usage (with Stable-baselines3)

TODO: Add your code

#setup model
model = PPO('MlpPolicy', env, n_steps = 1024, batch_size = 32, n_epochs = 4, gamma = 0.9, gae_lambda = 0.98, ent_coef = 0.01, verbose=1)

model.learn(total_timesteps=1000000)

model_name = "ppo-LunarLander-v2"
model.save(model_name)

eval_env = Monitor(gym.make("LunarLander-v2"))

# Evaluate the model with 10 evaluation episodes and deterministic=True
mean_reward, std_reward = evaluate_policy(model, eval_env, n_eval_episodes=10, deterministic=True)

# Print the results
print(f"mean_reward={mean_reward:.2f} +/- {std_reward}")

# mean_reward=-129.43 +/- 17.188418554136966
...

Diffs

  • Dropped gamma down to 0.9, did not work.
Downloads last month
0
Video Preview
loading

Evaluation results