distilbert-base-uncased_classification_finetuned_mobile01_all_adptive
This model is a fine-tuned version of distilbert/distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2566
- F1: 0.9346
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | F1 |
---|---|---|---|---|
0.4238 | 1.0 | 909 | 0.3917 | 0.8105 |
0.3032 | 2.0 | 1818 | 0.3044 | 0.8837 |
0.2524 | 3.0 | 2727 | 0.2708 | 0.9034 |
0.2664 | 4.0 | 3636 | 0.2430 | 0.9175 |
0.1926 | 5.0 | 4545 | 0.2437 | 0.9303 |
0.1507 | 6.0 | 5454 | 0.2849 | 0.9258 |
0.1547 | 7.0 | 6363 | 0.2566 | 0.9346 |
0.139 | 8.0 | 7272 | 0.3264 | 0.9318 |
0.1062 | 9.0 | 8181 | 0.3134 | 0.9319 |
Framework versions
- Transformers 4.39.3
- Pytorch 2.2.2+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 1
Model tree for Mou11209203/distilbert-base-uncased_classification_finetuned_mobile01_all_adptive
Base model
distilbert/distilbert-base-uncased