Qwen 2.5 Instruct 14B - llamafile
- Model creator: Qwen
- Original model: Qwen/Qwen2.5-14B-Instruct-1M
Mozilla packaged the Qwen 2.5 models into executable weights that we call llamafiles. This gives you the easiest fastest way to use the model on Linux, MacOS, Windows, FreeBSD, OpenBSD and NetBSD systems you control on both AMD64 and ARM64.
Software Last Updated: 2025-03-31
Llamafile Version: 0.9.2
Quickstart
To get started, you need both the Qwen 2.5 weights, and the llamafile software. Both of them are included in a single file, which can be downloaded and run as follows:
wget https://huggingface.co/Mozilla/Qwen2.5-14B-Instruct-1M-llamafile/resolve/main/Qwen2.5-14B-Instruct-1M-Q6_K.llamafile
chmod +x Qwen2.5-14B-Instruct-1M-Q6_K.llamafile
./Qwen2.5-14B-Instruct-1M-Q6_K.llamafile
The default mode of operation for these llamafiles is our new command line chatbot interface.
Usage
You can use triple quotes to ask questions on multiple lines. You can
pass commands like /stats
and /context
to see runtime status
information. You can change the system prompt by passing the -p "new system prompt"
flag. You can press CTRL-C to interrupt the model.
Finally CTRL-D may be used to exit.
If you prefer to use a web GUI, then a --server
mode is provided, that
will open a tab with a chatbot and completion interface in your browser.
For additional help on how it may be used, pass the --help
flag. The
server also has an OpenAI API compatible completions endpoint that can
be accessed via Python using the openai
pip package.
./Qwen2.5-14B-Instruct-1M-Q6_K.llamafile --server
An advanced CLI mode is provided that's useful for shell scripting. You
can use it by passing the --cli
flag. For additional help on how it
may be used, pass the --help
flag.
./Qwen2.5-14B-Instruct-1M-Q6_K.llamafile --cli -p 'four score and seven' --log-disable
Troubleshooting
Having trouble? See the "Gotchas" section of the README.
On Linux, the way to avoid run-detector errors is to install the APE interpreter.
sudo wget -O /usr/bin/ape https://cosmo.zip/pub/cosmos/bin/ape-$(uname -m).elf
sudo chmod +x /usr/bin/ape
sudo sh -c "echo ':APE:M::MZqFpD::/usr/bin/ape:' >/proc/sys/fs/binfmt_misc/register"
sudo sh -c "echo ':APE-jart:M::jartsr::/usr/bin/ape:' >/proc/sys/fs/binfmt_misc/register"
On Windows there's a 4GB limit on executable sizes.
Context Window
This model has a max context window size of 128k tokens. By default, a
context window size of 8192 tokens is used. You can ask llamafile
to use the maximum context size by passing the -c 0
flag. That's big
enough for a small book. If you want to be able to have a conversation
with your book, you can use the -f book.txt
flag.
GPU Acceleration
On GPUs with sufficient RAM, the -ngl 999
flag may be passed to use
the system's NVIDIA or AMD GPU(s). On Windows, only the graphics card
driver needs to be installed if you own an NVIDIA GPU. On Windows, if
you have an AMD GPU, you should install the ROCm SDK v6.1 and then pass
the flags --recompile --gpu amd
the first time you run your llamafile.
On NVIDIA GPUs, by default, the prebuilt tinyBLAS library is used to
perform matrix multiplications. This is open source software, but it
doesn't go as fast as closed source cuBLAS. If you have the CUDA SDK
installed on your system, then you can pass the --recompile
flag to
build a GGML CUDA library just for your system that uses cuBLAS. This
ensures you get maximum performance.
For further information, please see the llamafile README.
About llamafile
llamafile is a new format introduced by Mozilla on Nov 20th 2023. It uses Cosmopolitan Libc to turn LLM weights into runnable llama.cpp binaries that run on the stock installs of six OSes for both ARM64 and AMD64.
Qwen2.5-14B-Instruct-1M
Introduction
Qwen2.5-1M is the long-context version of the Qwen2.5 series models, supporting a context length of up to 1M tokens. Compared to the Qwen2.5 128K version, Qwen2.5-1M demonstrates significantly improved performance in handling long-context tasks while maintaining its capability in short tasks.
The model has the following features:
- Type: Causal Language Models
- Training Stage: Pretraining & Post-training
- Architecture: transformers with RoPE, SwiGLU, RMSNorm, and Attention QKV bias
- Number of Parameters: 14.7B
- Number of Paramaters (Non-Embedding): 13.1B
- Number of Layers: 48
- Number of Attention Heads (GQA): 40 for Q and 8 for KV
- Context Length: Full 1,010,000 tokens and generation 8192 tokens
- We recommend deploying with our custom vLLM, which introduces sparse attention and length extrapolation methods to ensure efficiency and accuracy for long-context tasks. For specific guidance, refer to this section.
- You can also use the previous framework that supports Qwen2.5 for inference, but accuracy degradation may occur for sequences exceeding 262,144 tokens.
For more details, please refer to our blog, GitHub, Technical Report, and Documentation.
Requirements
The code of Qwen2.5 has been in the latest Hugging face transformers
and we advise you to use the latest version of transformers
.
With transformers<4.37.0
, you will encounter the following error:
KeyError: 'qwen2'
Quickstart
Here provides a code snippet with apply_chat_template
to show you how to load the tokenizer and model and how to generate contents.
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "Qwen/Qwen2.5-14B-Instruct-1M"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "Give me a short introduction to large language model."
messages = [
{"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
Processing Ultra Long Texts
To enhance processing accuracy and efficiency for long sequences, we have developed an advanced inference framework based on vLLM, incorporating sparse attention and length extrapolation. This approach significantly improves model generation performance for sequences exceeding 256K tokens and achieves a 3 to 7 times speedup for sequences up to 1M tokens.
Here we provide step-by-step instructions for deploying the Qwen2.5-1M models with our framework.
1. System Preparation
To achieve the best performance, we recommend using GPUs with Ampere or Hopper architecture, which support optimized kernels.
Ensure your system meets the following requirements:
- CUDA Version: 12.1 or 12.3
- Python Version: >=3.9 and <=3.12
VRAM Requirements:
- For processing 1 million-token sequences:
- Qwen2.5-7B-Instruct-1M: At least 120GB VRAM (total across GPUs).
- Qwen2.5-14B-Instruct-1M: At least 320GB VRAM (total across GPUs).
If your GPUs do not have sufficient VRAM, you can still use Qwen2.5-1M for shorter tasks.
2. Install Dependencies
For now, you need to clone the vLLM repository from our custom branch and install it manually. We are working on getting our branch merged into the main vLLM project.
git clone -b dev/dual-chunk-attn [email protected]:QwenLM/vllm.git
cd vllm
pip install -e . -v
3. Launch vLLM
vLLM supports offline inference or launch an openai-like server.
Example of Offline Inference
from transformers import AutoTokenizer
from vllm import LLM, SamplingParams
# Initialize the tokenizer
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-14B-Instruct-1M")
# Pass the default decoding hyperparameters of Qwen2.5-14B-Instruct
# max_tokens is for the maximum length for generation.
sampling_params = SamplingParams(temperature=0.7, top_p=0.8, repetition_penalty=1.05, max_tokens=512)
# Input the model name or path. See below for parameter explanation (after the example of openai-like server).
llm = LLM(model="Qwen/Qwen2.5-14B-Instruct-1M",
tensor_parallel_size=4,
max_model_len=1010000,
enable_chunked_prefill=True,
max_num_batched_tokens=131072,
enforce_eager=True,
# quantization="fp8", # Enabling FP8 quantization for model weights can reduce memory usage.
)
# Prepare your prompts
prompt = "Tell me something about large language models."
messages = [
{"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
# generate outputs
outputs = llm.generate([text], sampling_params)
# Print the outputs.
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
Example of Openai-like Server
vllm serve Qwen/Qwen2.5-14B-Instruct-1M \
--tensor-parallel-size 4 \
--max-model-len 1010000 \
--enable-chunked-prefill --max-num-batched-tokens 131072 \
--enforce-eager \
--max-num-seqs 1
# --quantization fp8 # Enabling FP8 quantization for model weights can reduce memory usage.
Then you can use curl or python to interact with the deployed model.
Parameter Explanations:
--tensor-parallel-size
- Set to the number of GPUs you are using. Max 4 GPUs for the 7B model, and 8 GPUs for the 14B model.
--max-model-len
- Defines the maximum input sequence length. Reduce this value if you encounter Out of Memory issues.
--max-num-batched-tokens
- Sets the chunk size in Chunked Prefill. A smaller value reduces activation memory usage but may slow down inference.
- Recommend 131072 for optimal performance.
--max-num-seqs
- Limits concurrent sequences processed.
You can also refer to our Documentation for usage of vLLM.
Troubleshooting:
Encountering the error: "The model's max sequence length (xxxxx) is larger than the maximum number of tokens that can be stored in the KV cache."
The VRAM reserved for the KV cache is insufficient. Consider reducing the
max_model_len
or increasing thetensor_parallel_size
. Alternatively, you can reducemax_num_batched_tokens
, although this may significantly slow down inference.Encountering the error: "torch.OutOfMemoryError: CUDA out of memory."
The VRAM reserved for activation weights is insufficient. You can try setting
gpu_memory_utilization
to 0.85 or lower, but be aware that this might reduce the VRAM available for the KV cache.Encountering the error: "Input prompt (xxxxx tokens) + lookahead slots (0) is too long and exceeds the capacity of the block manager."
The input is too lengthy. Consider using a shorter sequence or increasing the
max_model_len
.
Evaluation & Performance
Detailed evaluation results are reported in this ๐ blog and our technical report.
Citation
If you find our work helpful, feel free to give us a cite.
@misc{qwen2.5-1m,
title = {Qwen2.5-1M: Deploy Your Own Qwen with Context Length up to 1M Tokens},
url = {https://qwenlm.github.io/blog/qwen2.5-1m/},
author = {Qwen Team},
month = {January},
year = {2025}
}
@article{qwen2.5,
title={Qwen2.5-1M Technical Report},
author={An Yang and Bowen Yu and Chengyuan Li and Dayiheng Liu and Fei Huang and Haoyan Huang and Jiandong Jiang and Jianhong Tu and Jianwei Zhang and Jingren Zhou and Junyang Lin and Kai Dang and Kexin Yang and Le Yu and Mei Li and Minmin Sun and Qin Zhu and Rui Men and Tao He and Weijia Xu and Wenbiao Yin and Wenyuan Yu and Xiafei Qiu and Xingzhang Ren and Xinlong Yang and Yong Li and Zhiying Xu and Zipeng Zhang},
journal={arXiv preprint arXiv:2501.15383},
year={2025}
}
- Downloads last month
- 24
Model tree for Mozilla/Qwen2.5-14B-Instruct-1M-llamafile
Base model
Qwen/Qwen2.5-14B